

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

PARTICLE FILTER BASED TRACKING IN A
DETECTION SPARSE DISCRETE EVENT SIMULATION

ENVIRONMENT

by

Drew A. Borovies

March 2007

 Thesis Advisor: Christian Darken
 Second Reader: Arnold Buss

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Particle Filter Based Tracking in a Detection
Sparse Discrete Event Simulation Environment
6. AUTHOR(S): Drew A. Borovies

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
 One of the key abilities of agents in military simulations is to react to both detections of and counter-detections by other agents in
the environment. While methods have been developed to model these detections and counter-detections, the majority of these
methods model detection and counter-detection as an all or nothing prospect in which an un-detected entity at some point crosses
an arbitrary threshold of observability and becomes fully detected. In actuality, even extremely uncertain or incomplete detections
and counter-detections of opposing entities can provide enough data for entities to make reasonably intelligent decisions on the
virtual battlefield. Recent developments in commercial gaming artificial intelligence suggest that particle-based tracking
techniques can provide accurate and computationally efficient state estimation of opposing agents within virtual environments. In
this work several particle-based methods for obtaining and tracking contacts are explored to determine the feasibility of their use as
a general purpose tracking technique in military simulations.

15. NUMBER OF
PAGES

135

14. SUBJECT TERMS Particle-based tracking, agents, active/passive sensing modes.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

PARTICLE FILTER BASED TRACKING IN A DETECTION SPARSE
DISCRETE EVENT SIMULATION ENVIRONMENT

Drew A. Borovies
Lieutenant, United States Navy

B.S., Virginia Tech, 2000

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING, VIRTUAL ENVIRONMENTS, AND
SIMULATION (MOVES)

from the

NAVAL POSTGRADUATE SCHOOL
March 2007

Author: Drew A. Borovies

Approved by: Christian Darken
Thesis Advisor

Arnold Buss
Second Reader

Rudolph Darken
Chair, MOVES Academic Committee

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

One of the key abilities of agents in military simulations is to react to both

detections of and counter-detections by other agents in the environment. While methods

have been developed to model these detections and counter-detections, the majority of

these methods model detection and counter-detection as an all or nothing prospect in

which an un-detected entity at some point crosses an arbitrary threshold of observability

and becomes fully detected. In actuality, even extremely uncertain or incomplete

detections and counter-detections of opposing entities can provide enough data for

entities to make reasonably intelligent decisions on the virtual battlefield. Recent

developments in commercial gaming artificial intelligence suggest that particle-based

tracking techniques can provide accurate and computationally efficient state estimation of

opposing agents within virtual environments. In this work several particle-based methods

for obtaining and tracking contacts are explored to determine the feasibility of their use as

a general purpose tracking technique in military simulations.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM STATEMENT ...1
B. RESEARCH APPROACH..5
C. THESIS ORGANIZATION..5

II. BACKGROUND ..7
A. DISTRIBUTION REPRESENTATION..7

1. Gaussians ..8
2. Occupancy Maps..12
3. Particle Filters ..15
4. Density Estimation through Parzen-Windows................................18

B. USING DISTRIBUTION REPRESENTATIONS......................................22
1. A* Search..23
2. Particle Based Communication ..25

III. MODEL ..29
A. ENVIRONMENT...29

1. Characteristics..29
2. Implementation ..30

B. PARTICLE TRACKING TECHNIQUE ..36
1. Track Creation...37

a. Initial Detection Distributions ..38
b. Detection Distribution Sampling..43
c. Estimated Position Calculation ..48

2. Track Maintenance..48
a. Particle Disqualification ...49
b. Repopulation Algorithms..52

3. Complete Naïve Particle Track Update Algorithm68
4. Contextual Particles...71

a. General Contextual Particles..71
b. Transitioning Contextual Particles ..74

C. USING THE PARTICLE TRACK ..79
1. Estimated Positions Again...79
2. Large Number of Samples...83

IV. ANALYSIS OF DIFFERENT TRACKING METHODS87
A. BASIS FOR TRACKING ANALYSIS ..87
B. ACTIVE TRACKING...87

1. Run to the South Scenario...88
2. Southern Zig-Zag Scenario ...90

C. PASSIVE TRACKING..95
1. Closing Scenario...96
2. Triangulation Scenario..104

 viii

V. CONCLUSIONS AND FUTURE WORK...111
A. CONCLUSIONS ..111
B. FUTURE WORK...112

1. Use in Actual Simulation...112
2. Contextual Particle Behaviors ..113
3. Additional Dimension ..114

LIST OF REFERENCES..115

INITIAL DISTRIBUTION LIST ...117

 ix

LIST OF FIGURES

Figure 1. 3D Graph of the Standard Bivariate Normal Distribution8
Figure 2. Distribution Parameter Definitions (From Stroup et al., 2000)9
Figure 3. Two Distributed Robots Observe a Target (From Stroupe et al., 2000)..........11
Figure 4. Merged Distributions from Two Observations (From Stroupe et al. 2000)11
Figure 5. Continuous Prediction vs. Discontinuous Prediction (From Isla, 2006)12
Figure 6. The Problem of Spatial Representation (From Isla, 2006)12
Figure 7. Illustration of Particle Filter State Estimation (From Bererton 2004)15
Figure 8. Sampling Importance Resampling Filter Algorithm (After Arulampalam et

al., 2001) ..16
Figure 9. Effect of Window Width on Parzen-Windows (From Duda et al. 2001)19
Figure 10. Parzen-Window Estimates of Standard Normal Distribution (From Duda

et al. 2001) ...21
Figure 11. Parzen-Windows Estimates of a Bimodal Distribution (From Duda et al.

2001) ..22
Figure 12. Coordinated Particle Filter Search (From Klaas et al., 2005)..........................27
Figure 13. Probability Density Corresponding to Jungle Search (From Klaas et al.,

2005) ..28
Figure 14. Empty 100 by 100 Simulation Environment ...31
Figure 15. Appearance of Base Blue and Red Entities ...31
Figure 16. Speed Leaders Representing Various Courses and Speeds32
Figure 17. Simulation Sensor Arc Appearance ...34
Figure 18. Basic Track Appearance ..35
Figure 19. Patrol Plan Appearance..36
Figure 20. Location Component of Initial Detection Distribution....................................39
Figure 21. Location Distribution Parameters ..39
Figure 22. Location Distributions with Differing Bearing/Range Ambiguities................42
Figure 23. Components of an Initial Detection Distribution...43
Figure 24. Sampling from a Detection Distribution to Create a New Track.....................45
Figure 25. New Track Created by Sampling an Initial Detection Distribution.................46
Figure 26. Parzen-Windows Approximation of Initial Detection Distribution Heading

Density (Window Width 7.2)...46
Figure 27. Parzen-Windows Approximation of Initial Detection Distribution Speed

Density (Window Width 1.0)...47
Figure 28. Parzen-Windows Approximation of Initial Detection Distribution Position

Density (Window Width 2.0)...47
Figure 29. Computing an Estimated Position from a Particle Track.................................48
Figure 30. Disqualification of Particles via Detection Events ..50
Figure 31. Particle Disqualification via Sanitization...52
Figure 32. Partial Repopulation Algorithm...55
Figure 33. Unsuitability of Partial Repopulation as Sole Repopulation Method..............56
Figure 34. Blank Speed Window ..57

 x

Figure 35. Determining Ends of Speed Window for Position Bulk Repopulation
Algorithm...58

Figure 36. Speed Window for Estimated Speed of Ten ..58
Figure 37. Speed Window for Estimated Speed of Twenty-Seven...................................58
Figure 38. Assigned Weights for Various Required Speeds Based on Estimated

Position Speeds of Ten (a) and Twenty-Seven (b) ..59
Figure 39. Weighted Position Bulk Repopulation Algorithm...61
Figure 40. Result of Applying the Weighted Position Bulk Repopulation Method..........62
Figure 41. Parzen-Windows Approximation of the Weight Distribution Density for a

Track Following Weighted Position Bulk Repopulation (Window Width
44 10−×)..63

Figure 42. Estimated Heading and Speed Bulk Repopulation Algorithm65
Figure 43. Result of Applying the Estimated Heading and Speed Bulk Repopulation

Algorithm...66
Figure 44. Parzen-Windows Approximation of Heading Distribution Density

Following Estimated Heading and Speed Bulk Repopulation Method
(Window Width 7.2) ..67

Figure 45. Parzen-Windows Approximation of Speed Distribution Density Following
Estimated Heading and Speed Bulk Repopulation Method (Window Width
1.0) ...67

Figure 46. Effects of Different Bulk Repopulation Methods..68
Figure 47. Naïve Particle Track Update Algorithm ..70
Figure 48. General Contextual Particle Update Algorithm...72
Figure 49. Difference between Naïve and General Contextual Particle Tracking............74
Figure 50. Transitional Contextual Particle Update Algorithm ..75
Figure 51. Transitional Contextual Particles Displaying a “Hiding” Behavior77
Figure 52. Transitional Contextual Particles Displaying a “Seeking” Behavior78
Figure 53. Computing an Estimated Position from a Particle Track.................................79
Figure 54. Limited Usefulness of Estimated Position when Using General Contextual

Particles..81
Figure 55. Difference in Estimated Position Types ..81
Figure 56. Estimated Position Failure ...82
Figure 57. Initial Setup in Path Planning Example ...84
Figure 58. Path Planned Based on “Binned” Particle Positions..85
Figure 59. Altered Path Planned Following Additional Detection85
Figure 60. Run to the South Scenario Visualization ...88
Figure 61. Parzen-Windows Approximation of Time Lapsed Particle Track Heading

Distribution (Window Width 7.2)..90
Figure 62. Parzen-Windows Approximation of Time Lapsed Particle Track Speed

Distribution (Window Width 1.0)..90
Figure 63. Southern Zig-Zag Visualization...91
Figure 64. Difference between Estimated and Actual Red Platform Heading in

Southern Zig-Zag Scenario ..92
Figure 65. Time Lapsed Parzen-Windows Approximation of Particle Track Heading

Density (Window Width 7.2)...94

 xi

Figure 66. Southern Zig-Zag Scenarion Visualization for Comparison with Parzen-
Windows Approximation of same Scenario ..94

Figure 67. Time Lapsed Parzen-Windows Approximation of Particle Track Speed
Density (Window Width 1.0)...95

Figure 68. Closing Scenario Visualization..96
Figure 69. Difference Between Estimated and Actual Position in Closing Scenario98
Figure 70. Difference Between Estimated and Actual Heading in Closing Scenario.......99
Figure 71. Time-Lapsed Parzen-Windows Approximation of General Contextual

Particle Filter Heading Density (Window Width 7.2)100
Figure 72. Time-Lapsed Parzen-Windows Approximation of Transitioning

Contextual Particle Filter Heading Density (Window Width 7.2).................101
Figure 73. Difference Between Estimated and Actual Speed in Closing Scenario.........102
Figure 74. Time-Lapsed Parzen-Windows Approximation of Naïve Particle Filter

Speed Density (Window Width 1.0)..103
Figure 75. Time-Lapsed Parzen-Windows Approximation of Transitioning

Contextual Particle Filter Speed Density (Window Width 1.0)104
Figure 76. Triangulation Scenario Visualization ..105
Figure 77. Difference Between Estimated and Actual Position in Triangulation

Scenario..106
Figure 78. Difference Between Estimated and Actual Heading in Triangulation

Scenario..107
Figure 79. Time-Lapsed Parzen-Windows Approximation of Transitioning

Contextual Particle Filter Heading Density (Window Width 7.2).................108
Figure 80. Time-Lapsed Parzen-Windows Approximation of Naive Particle Filter

Heading Density (Window Width 7.2) ..108
Figure 81. Difference Between Estimated and Actual Speed in Triangulation

Scenario..110

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Simulation Sensor Parameters ...32
Table 2. Simulation Sensor Parameters ...40
Table 3. Naïve Particle Parameters ..44
Table 4. Naïve Particle Track Parameters..69
Table 5. Naïve Particle Track Parameters for Scenarios ...88
Table 6. General Contextual Particle Track Parameters for Scenarios..........................89
Table 7. Average and Median Criteria Satisfaction Times in Run to the South

Scenario..89
Table 8. Average Heading Accuracy of Different Track Types in Southern Zig-Zag

Scenario..92
Table 9. Average Speed Accuracy of Different Track Types in Southern Zig-Zag

Scenario..93
Table 10. Transitioning Contextual Particle Track Parameters for Scenarios.................97
Table 11. Average Position Accuracy of Different Track Types in Closing Scenario....98
Table 12. Average Heading Accuracy of Different Track Types in Closing Scenario .100
Table 13. Average Speed Accuracy of Different Track Types in Closing Scenario102
Table 14. Average Position Accuracy of Different Track Types in Triangulation

Scenario..106
Table 15. Average Heading Accuracy of Different Track Types in Triangulation

Scenario..109
Table 16. Average Speed Accuracy of Different Track Types in Triangulation

Scenario..110

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

First of all I would like to thank my thesis advisor Dr. Christian J. Darken for his

expert guidance through the thesis process. His responses to the difficulties I

encountered during the course of this work seemed to always take the form of recent

publications which directly addressed the issues with which I was wrestling.

Additionally, his ability to understand and translate my “navy-speak” into mainstream

English was instrumental in allowing this work to be completed in a manner which

should be reasonably understandable by those without the benefit of a surface navy

background.

Without the timely support and proof-reading efforts of my family this work

would never have been finished. Despite a heavy travel schedule between Virginia,

Pennsylvania, and Hawaii and an impending deployment my family turned draft copies

of my thesis around loaded with insightful comments in mere hours. Their lack of

simulation background helped to ensure that the documentation of my work with particle

filters in the form of this thesis was not written to be understood only by simulationists

and computer scientists.

Finally, I would like to thank my classmates at the MOVES Institute for their

support and counsel through the “thesis-crunch” at the Naval Postgraduate School. As

they mentioned several times, if my work amounted to nothing else, I had successfully

designed perhaps the most hypnotic screen-saver to ever grace the screens of naval

laptops. Their companionship in the “geeked-out” MOVES study room and good-humor

through late nights of coding kept me working on my thesis when I otherwise would have

thrown up my hands in frustration and left the work for another day.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. PROBLEM STATEMENT
A continuing effort in both the commercial gaming and defense simulation

industry is the advancement of more reasonable actions by computer controlled entities.

One of the methods of injecting increased realism into virtual environments is the

increased use of autonomous agents in both gaming and simulation applications. An

agent is a representation of an entity in the environment which encapsulates some level of

autonomous decision making capability. Empowering individual entities to act within

environments of their own accord can result in simulation or game outputs with higher

levels of realism, particularly if agents’ knowledge of those environments is limited.

One of the problems associated with allowing agents to make autonomous

decisions within an environment is that of representing the uncertain positions or states of

other entities in such a way so as to allow agent decisions to approximate those which

would be taken by a human under the same circumstances. While commercial game

artificial intelligence has often allowed computer controlled players to “cheat” and have

perfect knowledge of the environment, this solution is undesirable in military

simulations. Attempts at limiting the amount of information available to computer

controlled entities to what could be considered a “reasonable” level must rely on some

base representation of the positions of other entities within the environment. A series of

discrete observations based on this representation must be flexible enough to provide an

increasingly accurate or inaccurate picture of the location or actions of another entity, or

a track on that entity, as the situation warrants.

The goal of this research is to examine the feasibility of using particle filter based

state estimation techniques as a general purpose method of representing entity situational

awareness in military simulations. Methods of modeling detections in military

simulations are well developed. Models representing detections via visual, aural, and

electromagnetic means have been created with varying levels of fidelity and included

across the whole spectrum of military simulations. The conversion of a single detection

or series of detections into tracking information for use by entities within the simulation

2

is to a certain extent also a solved problem. Differing types of detections yield widely

varied amounts of state information about the objects being tracked; as a result a wide

array of tracking methods have been developed for use in creating tracks from detection

information.

While tracking methods are as varied as the models used to manage detections,

they are generally tuned to accurately model tracks acquired from specific types of

detections. Detection types can generally be classified into one of two general classes:

active and passive detections. Although there are exceptions, tracking methods currently

employed in military simulations can be classified into those that represent active or

passive tracks with little ability to accurately portray tracks acquired through the other

class of detections. This is due to the fundamentally different nature in which the

detections which are the basis for these two types of tracks are acquired.

Active detections result when a sensor emits some kind of energy into the

environment. When this energy “bounces” off another entity in the environment,

portions of that energy will return to the vicinity of the originating sensor and the

characteristics of this returning energy can be examined by the sensor in its attempts to

detect the other entity. Detections acquired in this manner are generally exact in nature,

providing both range and bearing information to the sensor with relatively little

uncertainty. Radar, laser range-finders, and echo-location are examples of sensors which

achieve detections through active means.

The exact nature of active detections makes tracking objects acquired through

these means a deceptively trivial affair. The comparisons of a series of detections can

result in very accurate course and speed information of the entity being tracked. With

high enough rates of emission by the active sensor in question, active tracks can be very

responsive to changes in target motion. The exact nature of active tracks must be counter

balanced with the fact that the emission of energy into the environment by the active

sensor can be utilized by other entities to yield passive detections of the platform sensing

through active means.

Passive detections result from a sensor’s observation of the surrounding

environment. As these observations are obtained, the sensor pulls out details which

3

correspond to the emissions of other entities into the environment. These observations,

or passive detections, can then be used to create passive tracks of the object in question.

Detections acquired through passive means are often ambiguous in nature and yield

comparatively uncertain information in a tracking sense in comparison to active

detections. Sight, hearing, and passive sonar are examples of passive detection

modalities.

Methods used to track objects through passive means can generally be separated

into those which represent tracked-entity location using managed areas of uncertainty and

those that perform target motion analysis (TMA) on a series of passive detections. The

former method seeks to bound possible target locations within an area of interest. Some

level of knowledge about the target’s capabilities is then used to ensure that the area of

uncertainty changes as necessary to continually contain the tracked entity. TMA seeks to

determine the heading and speed of the tracked entity through the observation of the

changing characteristics of a series of passive detections.

While methods exist to track through both active and passive means, the inclusion

of several different tracking algorithms in a simulation to adequately handle both types of

tracks presents coordination and complexity problems. Many simulations, in a nod to

these difficulties, model passive detections through the use of passive detection

thresholds and distributions. When the possibility of passive detection occurs, these

thresholds and distributions are used to determine if the possible detection was of a

meaningful enough nature to result in the acquisition of the entity in question. If an

acquisition is calculated to have occurred, the nature of the track used by the detecting

entity will resemble an exact active detection of the same entity. In essence, the passive

detection problem is treated as an “all-or-nothing” affair. A tracking method capable of

handling both active and passive detections with seamless transitions between both

detection types would address this problem. Unfortunately, such a tracking method has

not yet been adopted by the military simulation community.

The use of particle filters as state-estimation tools was proposed in (Bererton

2004). Tracks obtained using this method, while not directly comparable to detections

and tracking in military simulations, somewhat resemble active tracks. In one discussion

4

of particle-based communication among game agents (Klaas et al., 2005), an example

containing fused data from a ranging sensor and a direction sensor indicates that this

method could handle passive detections as well as the active detections first discussed.

The ability to track entities through both types of detections seems to indicate that this

particle filter method could be used in certain classes of military simulations where

exacting degrees of tracking fidelity are not required. Prior to this adoption, however, it

is necessary to examine some of the differences between the commercial game

environment of the proposed particle filter tracking methods and environments in military

simulations.

The particle filter state estimation methods mentioned above are proposed for use

in relatively small environments, notably in first-person shooter-like domains. These

types of environments, while varying in levels of complexity, are notable for the

relatively large area of regard of the sensors employed by the agents. One of the key

results of this feature is that it can be reasonably assumed that the entire environment can

be included in an estimation of the state of opposing agents. By contrast, many military

simulations occur in very large environments where the state estimation of opposing

entities, were it to take into account the entire environment, would be prohibitively

expensive.

Another side effect of the comprehensive area of regard in commercial gaming

environments is that continued observations of the environment yield large amounts of

information about the state of opposing entities either through the confirmation or

rejection of previous state estimations. As the effective area of regard of utilized sensors

in an environment decreases, the state-estimation method being employed must be able to

make more ambiguous approximations about the state of other entities while retaining the

tracking robustness to take into account a wider range of states. Agents representing

surface ships on the open ocean might contain tracks on other surface ships acquired days

earlier which are currently far outside of detection range, tracks which are not currently

held with its own sensors but which are being actively tracked by other friendly surface

ships, and tracks which it currently holds with its own sensors all at the same time. As

the simulation environment in question grows larger, the number of concrete observations

provided by agent sensors decreases while the number of ambiguous passive detections

5

increases. An adaptation of the particle-filter method of state estimation for use in

military simulations must be able to manage a large number of vague passive detections

and obtain meaningful information from those detections in addition to providing exact

detection and tracking information when the situation warrants.

B. RESEARCH APPROACH
As current implementations of particle filter based state estimation are few, this

research will require the construction of a simple environment that adequately reflects the

environmental concerns addressed above. Once a framework allowing entities in the

environment to track other entities using particle-filters has been implemented, various

refinements and techniques for maintaining these particle-filters will be examined to

determine the techniques’ relative strengths and weaknesses.

C. THESIS ORGANIZATION

The rest of this thesis is organized as follows:

• Chapter II, Background, describes various techniques for representing
uncertainty distributions and entity states in various fields of study.
Methods of using these different techniques as aids to decision making,
communication, and prediction are also discussed.

• Chapter III, Model, describes the nature of the environment within which
the particle tracking technique will be tested. The implementation-specific
information about the particle tracking techniques being evaluated will be
presented along with the manner in which these techniques were used to
enable rudimentary decision making within the virtual environment.

• Chapter IV, Analysis of Different Tracking Methods, provides a
quantitative analysis of the relative strengths and weaknesses of the
different particle tracking methods developed in active and passive
contexts with regard to their possible utility in a simulation environment.

• Chapter V, Conclusions and Future Work, summarizes the contribution
made by this thesis and discusses possible future expansions to the work.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. BACKGROUND

A. DISTRIBUTION REPRESENTATION
Computer applications requiring agents to track other objects must have some

way of representing the locations of other entities in the environment. While a traditional

approach in the computer gaming industry has been to provide perfect information to

computer controlled players, the practice of limiting environmental knowledge to provide

a more realistic experience to players has become increasingly prevalent. Commercial

programmers now face the challenge of representing agent knowledge of other entities’

position in terms of some probability distribution.

While representing environmental knowledge encompasses a huge number of

research areas, the one with which this work is most concerned is representation of object

location with some level of uncertainty. Acquiring and tracking a target through the use

of uncertainty distributions requires both the means to represent an individual “detection”

in an uncertain manner and to estimate target state information from a series of

detections. Several methods for representing uncertainty distributions which were

considered in the course of this work are discussed below to provide an understanding of

the difficulties present in tracking objects through a virtual environment.

Gaussian distributions are briefly reviewed as a departure point for other more

exotic methods of representing uncertainty. Gaussian distributions have the advantage

that they are mathematically well developed and are a traditional method of representing

a position-distribution. However, the extension of Gaussian distributions to the

representation of complex or discontinuous uncertainty distributions is somewhat

troublesome, and the review of occupancy maps as a tracking method below discuss these

problems and proposes a method for handling these difficult situations in a discrete

manner. Particle filters address the shortfalls of Gaussian distributions in a continuous

rather than discrete manner, and recent proposals have suggested their use in commercial

game artificial intelligence for tracking and search. As such, and because they are the

basis of this work, they are also reviewed below. The Parzen-windows approach to

density estimation is a method for obtaining uncertainty distribution information from a

8

large number of samples. Although this technique is not a basis for this work, it is used

in several instances to visualize the state of particle filters and so is reviewed below.

1. Gaussians

Multivariate Gaussian distributions, also known as multivariate normal

distributions, can be thought of as a generalization to multiple dimensions of the one-

dimensional normal distribution. With an estimated position and a known measurement

error, a probability density distribution can be created to represent the range of possible

target locations. As Gaussians are based on the normal distribution, this range of possible

locations will encompass the entire environment (although at probabilities close to zero

far from the mean). A graph of the standard bivariate normal distribution is shown

below:

Figure 1. 3D Graph of the Standard Bivariate Normal Distribution

9

In (Stroupe et al., 2000) bivariate Gaussian distributions are examined for their

use by robots playing soccer. This discussion begins with a presentation of the canonical

form of a two dimensional Gaussian dependent on standard deviations, a covariance

matrix, and mean:

 () ()11 1() exp
22

T
p X X X C X X

Cπ
−⎛ ⎞= − − −⎜ ⎟

⎝ ⎠
 (0.1)

2

2
x x y

x y y

C
σ ρσ σ

ρσ σ σ
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (0.2)

Note that in the above equations X is a vector containing x and y values and that

X is a vector containing the mean x and y of the distribution. This canonical form

represents a Gaussian oriented in the x, y plane. Unfortunately, observations are not

normally made in this manner. A more likely method of obtaining observations is

through a relative coordinate system. Stroupe’s discussion of the problem provides a

local coordinate system in line with observations made by soccer playing robots with

parameters as shown:

Figure 2. Distribution Parameter Definitions (From Stroup et al., 2000)

The figure above shows that an observation taken in a local coordinate system

will likely consist of an observed mean (x, y), an angle corresponding to the major axis of

the observation ()θ , major and minor axis standard deviations min(,)majσ σ , and a

distance to the mean (d). In order to work with an observation taken in an arbitrary

10

coordinate system, it must be transformed to the canonical coordinate system. Stroup

accomplishes this by first determining the initial covariance matrix of the observation:

2

2
min

0
0
maj

LC
σ

σ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (0.3)

A rotation of X in equation 1.1 by θ leads to:

 1 1() () () ()T T
L LC R C R C R C Rθ θ θ θ− −= − ⇒ = − − (0.4)

Transforming Gaussian observations from arbitrary coordinate frames to the

canonical form allows Gaussians corresponding to multiple observations to be “merged”

so that an estimate of the target’s position can be refined to reflect observations from

multiple platforms, sensors, or moments in time. Merging multiple observations requires

the combination of individual covariance matrices, the computation of the mean of the

merged distributions, and the principle axis of the merged distributions. These steps are

accomplished using the following formulae:

 [] 1'
1 1 1 2 1C C C C C C−= − + (0.5)

 [] ()1'
1 1 1 2 2 1X X C C C X X−= + + − (0.6)

 ' 11 2tan
2

B
A D

θ − ⎛ ⎞= ⎜ ⎟−⎝ ⎠
 (0.7)

In equation 1.7 A, B, and D correspond to the top left, top right/lower left, and

lower right entries of the merged covariance matrix, respectively. Once the principle axis

of the merged distribution has been computed, the rotation into canonical form is

reversed:

 ' ' ' '() ()TC R C Rθ θ= (0.8)

11

Stroupe demonstrates the effectiveness of this method of merging Gaussians with

an example simulating the combined observations of two robots:

Figure 3. Two Distributed Robots Observe a Target (From Stroupe et al., 2000)

In the left picture, two distributed robots see a target. In the right picture, these

observations have generated Gaussians oriented in relative coordinate axes. The

individual Gaussian distributions are shown at the left and their merged counterpart is

shown at the right in the figure below:

Figure 4. Merged Distributions from Two Observations (From Stroupe et al. 2000)

While the discussion above shows that Gaussians can be effectively used to

represent target uncertainty, the nature of the underlying distribution imposes constraints

on the use of this technique in complex environments. Theses issues, and an uncertainty

representation which addresses these issues, are discussed in reviews of occupancy maps

and particle filters in following sections.

12

2. Occupancy Maps

In being used as a position estimator the Guassian has a fundamental weakness.

Due to the continuous nature of the underlying probability distribution, it is

mathematically difficult (and perhaps impossible) to invalidate portions of the probability

distribution while leaving other portions unchanged. The figure below illustrates this

problem. The left image is of a continuous one-dimensional prediction. The right image

shows the same prediction with a span removed.

Figure 5. Continuous Prediction vs. Discontinuous Prediction (From Isla, 2006)

Occupancy maps address this problem by transitioning from a continuous

probability model to a discrete one. In essence, a grid is projected onto the environment

and each portion of the grid is treated as an area of probability. This allows the

probability for any given node to be adjusted based on the observability of that node and

properties of the tracker and object being tracked. In (Isla, 2006) the figure below is

provided as an impetus for examining the occupancy map approach to uncertainty

representation.

Figure 6. The Problem of Spatial Representation (From Isla, 2006)

13

At the left, the inability to invalidate portions of the distribution results in the loss

of meaningful data about spaces observed to be target-free. The ideal distribution is

shown in the middle. By laying a grid over the environment treating each of the grid

nodes as a separate “bucket” of probability, the distribution at the right can be obtained.

Isla provides a straightforward algorithm to update the probabilities of grid nodes

at each update cycle. A separate method for updating probabilities is necessary for both

when the target is observed and when it is unobserved. When the target is observed, the

probability distribution is centered around the node, *n , where the target was observed:

*

*

() 1

() 0
t

t

P n

P n n

←

≠ ←
 (0.9)

In the above equations ()tP n is the probability that the target is contained in node

n at time-step t. When the target is observed at *n the probability at that node is set to 1

(or 100%) and the probability at all other nodes is set to 0. When the target is not

observed, the nodes can be separated into V (visible) and H (hidden) sets with their

probabilities updated using the following equations:

 1(),culled t
n V

P P n−
∈

=∑ (0.10)

 , () 0,tn V P n∀ ∈ ← (0.11)

 1(), () .
1

t
t

culled

P nn H P n
P
−∀ ∈ ←

−
 (0.12)

In Equation (1.10) the probabilities of all visible nodes are added together.

Equation (1.11) then zeros-out the probabilities in the visible nodes as they are known to

not contain the target. In Equation (1.12) the distribution of probabilities is renormalized

for the nodes that are not visible at that time-step.

14

Regardless of whether the target is visible or not, a diffusion step is proposed

which accounts for the spread of uncertainty associated with the movement of the target:

'

'
1

()

() (1) () ().
4t t t

n neighbors n

P n P n P nλλ+
∈

= − + ∑ (0.13)

In Equation (1.13) λ is a diffusion constant in the range [0,1] which reflects the

rate at which an agent becomes uncertain about the target’s location. The above

expression also assumes a square grid with each node having four neighbors. Isla

remarks that a hexagonal grid is more desirable than a square grid when dealing with

diffusion, as such a grid will result in fewer artifacts when using the simple diffusion

model. The adaptation of the above diffusion model to a grid of different polygonal

construction is straightforward if the nodes of the grid in question are like sized.

The most computationally expensive segment of the occupancy map algorithm

lies with determining which nodes of the map are currently visible and which nodes are

not. Performing point-of-view renderings of the environment and ray-cast sampling of

several discrete points are proposed as possible methods of making this determination.

One of the benefits of using this model is that it can be used to represent simple search

behaviors with little effort. An agent attempting to find a target using this uncertainty

representation could quite simply approach the grid node in the environment containing

the highest probability continually updating its environmental model as it moves. A

systematic search for the target would result as probable hiding places are searched and

discarded.

Isla also proposes two simple examples of using the occupancy map model to

approximate emotional behavior. These behaviors would compare the probability of the

location where the target is eventually found with the amount of probability culled at

each time-step when the target is not located. When the target is located in a relatively

unlikely location a certain level of “surprise” could be represented. Likewise, when the

target is not located following the observation of very likely locations “confusion” could

result. While occupancy maps elegantly handle complex environments, the reduced

accuracy resulting from a discrete environment would limit its effectiveness in military

simulations. Particle filters are a way to extend this idea to a continuous environment.

15

3. Particle Filters

A particle based state estimation technique for game artificial intelligence has

recently been proposed in (Bererton, 2004). This technique seeks to address problems in

representing discontinuous or irregular probability distributions in a continuous manner

as opposed to the discrete manner of the occupancy map technique. In essence, the actual

state of the entity being tracked is assumed to come from some distribution which may or

may not be of a regular nature. A number of samples (particles) are drawn from this

distribution and can then be used to estimate the state of the object being tracked. At

each time step observations of the tracker are used to manipulate the particles in such a

way so as to fine-tune the estimate as to the state of the entity being searched or tracked.

Figure 7. Illustration of Particle Filter State Estimation (From Bererton 2004)

The figure above illustrates this concept. In the left picture, the particles (small

shaded circles) represent possible locations of the player. In the right picture, the non-

player character (NPC) has moved, and in doing so made several line-of-sight

observations which did not result in acquiring the player. The particles residing in those

areas which came under observation have been removed from consideration. In

Bererton’s implementation, the NPC continually moves towards the mean of the particle

distribution while making observations, resulting in a systematic search for the player.

Creating and maintaining particle filters so they can be used to acquire and track

targets is a relatively simple process. In (Arulampalam et al., 2001) theories, issues, and

algorithms for implementing several types of particle filters for tracking are provided.

One particular type, the Sampling Importance Resampling (SIR) filter, was chosen by

16

Bererton for use as a proof of concept that particle filters could be used for state

estimation in a simple game environment. The SIR particle filter algorithm is shown

below:

SIR PARTICLE FILTER

1 1 1 1[{ , }] [{ , } ,]s sN Ni i i i
k k i k k i kx w SIR x w z= − − ==

FOR 1: si N= ** Generate Proposal Distribution **

 Draw a sample i
kx from 1(|)i

k kp x x −

END FOR

FOR 1: si N= ** Incorporate Observations **

 Calculate (|)i i
k k kw p z x=

END FOR

 ** Renormalize Weights to Sum to One **

Calculate total weight: 1[{ }]sNi
k it SUM w ==

FOR 1: si N=

 1i i
k kw t w−=

END FOR

 - Resample distribution according to 1 1[{ , , }] [{ , }]s sN Ni i i i
k k i k k ix w RESAMPLE x w= =− =

Figure 8. Sampling Importance Resampling Filter Algorithm (After Arulampalam et al.,
2001)

The SIR algorithm is called at every time-step or frame in the game environment

and consists of three main steps. The first step is the generation of the proposal

distribution. This details sampling a number of times ()sN the distribution of particles

17

from the previous time-step to create a rough estimate of the position of the object being

tracked. While this follows neatly from the distribution of particles at a given time-step

in the middle of execution, there must be some initial distribution from which to start. In

Bererton’s implementation this initial configuration of particles is a uniform distribution

throughout the game environment. This initial configuration could also be tailored to

reflect some prior knowledge or intelligence estimate of the target in question.

The second step of the SIR algorithm incorporates tracker observations of the

environment to refine the proposal distribution obtained from the first step of the

algorithm. This amounts to adjusting the weights of the particles which currently fall

under observation. If the target is not currently being observed by the NPC, then the

weights of particles will be lowered or reduced to zero. If the target is currently being

observed, the weights of the particles will be raised. Once this is accomplished, the

weights of all samples are renormalized so that sum of all particle weights will be

approximately equal to one.

The third step of the SIR algorithm is a re-sampling of the distribution. This is

needed to maintain filter diversity and avoid the effects of degeneracy. In (Arulampalam

et al. 2001) a description of the particle filter degeneracy phenomenon is provided.

Particle filter degeneracy takes the form of negligible weights for the majority of particles

in the track. This is undesirable as it implies that a large amount of computational

resources will be used to update particles whose contribution to the estimated position of

the object being tracked is almost zero. Re-sampling the distribution of particles is one of

the methods to avoid this problem. Re-sampling is essentially a method of treating the

current proposal distribution (after refinement through observation) as an empirical

distribution and sampling from it repeatedly until a new population of particles is

obtained. By taking into account the weights of the particles when re-sampling more

likely observations are often included in the new distribution many times while un-likely

ones will generally be excluded.

By giving some type of movement or diffusion property to the particles being

used, such as the brownian (random) method used in (Bererton, 2004), those particles not

currently observable by the tracking entity can be used to cover the whole range of

18

movement by the target. The possibility exists for adding more complex movement and

behavior models to the particles, making them more likely to accurately reflect target

actions. Controlling the number of particles can also be used to increase or decrease the

effectiveness of the agent employing them to estimate the state of the environment or to

react to changing computational requirements needed to run the rest of the game in

question.

4. Density Estimation through Parzen-Windows
The Parzen-windows technique is an approach to estimating the density of a

random variable by examining the data provided by a number of samples. This data is

extrapolated to represent the entire distribution and can then be used to estimate the

probability of a given point or measure being from the distribution in question.

(Duda et al., 2001) provides an overview of the Parzen-windows technique. This

overview begins with the description of a simple window function. Assume that a large

number of samples from a distribution are available, and that the region of interest is a d-

dimensional hypercube. The length of one side of a the hypercube is nh , and the

hypercube will have a volume d
n nV h= . In order to determine if a given sample falls

within the hypercube, it can be tested using the following simple window function:

11 ; 1,...,

() 2
0 otherwise.

ju j d
uϕ

⎧ ≤ =⎪= ⎨
⎪⎩

 (0.14)

This window function ()uϕ represents a hypercube with 1nh = centered at the

origin. If this hypercube is centered at x as opposed to the origin, then the number of

samples ix which fall inside this hypercube is given by

1

n
i

n
i n

x xk
h

δ
=

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∑ (0.15)

The probability that a test point x came from the distribution represented by a

large number of samples can be determined using the following equation

19

1

1 1()
n

i
n

i n n

x xp x
n V h

ϕ
=

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∑ (0.16)

The power of this method is that window functions need not be as simplistic as

the hypercube presented in the example. In order to make ()np x a valid density function,

it is sufficient to require that a given window function satisfies the following two

constraints:

 () 0xϕ ≥ (0.17)

 () 1u duϕ =∫ (0.18)

In addition to a valid window function, density estimates obtained using these

techniques are affected by the window width used in the approximation. Window width

refers to the area or volume being tested in a test of an individual sample. In the simple

hypercube example, the window width is the volume of the hypercube. Larger volume

hypercubes increase the chance that an individual test will fall within the area of that

sample’s effect.

In more general terms, the window width, nh , has an effect on ()np x to the effect

that it changes how “smooth” or inclusive the estimate will be. The effect of different

window widths on the density approximations obtained using Parzen-windows is shown

below:

Figure 9. Effect of Window Width on Parzen-Windows (From Duda et al. 2001)

The images above are density estimates of a two-dimensional circularly

symmetric normal distribution with different window widths. The larger window widths

20

used towards the left result in smoother approximations, while the smaller window

widths to the right result in noisier estimates.

As was mentioned above, the power of the Parzen-windows approach is that

different window functions can be used to test individual samples. A common window

function used to estimate pattern densities is the standard normal probability density

function. This window function takes the form:

2

21()
2

u

u eϕ
π

−

= (0.19)

With a window width computed based on a predetermined constant and the

number of samples, 1 /nh h n= , ()np x takes the form of an average of normal densities

centered at the samples:

1

1 1()
n

i
n

i n n

x xp x
n h h

ϕ
=

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∑ (0.20)

Parzen-windows estimates of the standard normal distribution with varying

window widths (1h) and numbers of samples (n) are shown below:

21

Figure 10. Parzen-Window Estimates of Standard Normal Distribution (From Duda et al.

2001)

The Parzen-windows approach is not limited to estimating the densities of smooth

functions such as the standard normal shown above. The following figure shows Parzen-

windows estimates of a bimodal distribution containing a triangle and uniform

distribution. The window function used in this example is identical to that used to

estimate the standard normal distribution that is a zero-mean, unit-variance, univariate

normal density. While small sample sizes do not result in very accurate estimations,

larger sample sizes begin to resemble the true density function.

22

Figure 11. Parzen-Windows Estimates of a Bimodal Distribution (From Duda et al. 2001)

Due to the ability of Parzen-windows to approximate the densities of irregular

distributions, it will be used several times in this work to visualize the state of the particle

filters being used to track targets.

B. USING DISTRIBUTION REPRESENTATIONS
While the ability to accurately model uncertainty distributions is important, the

most accurate representation of an opposing entity’s state is useless unless the capability

exists to act on that state. Decision making and communication with regard to agents in

virtual environments is a large field, and as such cannot be reviewed as a whole in any

detail in this work. There are two small subsets of those fields, path finding and

collaborative tracking, which are instructive to review so that the utility of the particle

filter tracking technique can be demonstrated.

Although this work is focused on determining the feasibility of using particle

filters to track targets in a simulation environment rather than actually apply its use, some

limited forms of decision making were included in the implementation. This was to

verify that the particle filters being employed could be used to make simple decisions

23

regardless of the different nature of the tracks in this environment. The decision making

techniques employed were limited to a path finding algorithm based on the A* algorithm.

As such, that technique is briefly reviewed below.

In any military simulation, the ability of entities to communicate relevant

information to other entities is an issue of great importance. In order for particle filter

tracking to be used in simulations, it must be possible to communicate tracking

information to other entities using the tracking information at hand. In (Klaas et al.

2005) a communication technique based on particle filters is proposed. Although

communication between agents is not implemented in this work, a review of this

technique is provided to demonstrate that particle filters can be used to facilitate

communication between agents in a simulation environment.

1. A* Search

The planning of a path for an autonomous agent from one location to another in a

virtual environment is a common artificial intelligence problem. Common problems

involved in path planning include the avoidance of obstacles, the utilization of different

types of terrain, and the avoidance of threats. One of the most common search

techniques which can be used to solve these path planning problems is the A* search. In

(Stout 2000) a general overview of using the A* search for path planning is provided.

The A* algorithm searches a state space for the least costly path from a given

starting state to a goal state. It accomplishes this by examining the neighboring or

adjacent states of a given state. In path planning these states equate to locations in the

environment and an adjacent state is reached by movement of the agent into the adjacent

space. As the A* algorithm runs in a path planning problem, it repeatedly examines the

most promising unexplored location of which it is currently aware. When a location is

explored, if that location is the goal of the path being planned, the algorithm will halt;

otherwise it will record that location’s neighbors for further exploration.

In order to determine which locations have been explored and which remain

unexplored, A* keeps track of two lists of states called Open and Closed. The Open list

keeps track of unexplored locations and the Closed list keeps track of explored locations.

In each iteration of the algorithm, A* removes the most promising location from the Open

24

list for examination. If the location is not the goal location, the neighboring locations to

the newly pulled state are sorted. If any of these locations are new, they are placed on the

Open list. If any of these locations are already on the Open list, their respective state

information is updated if the current path has a cheaper cost than that already recorded.

If any of these locations are on the Closed list, they are ignored as they have already been

explored. If during the course of the algorithm the Open list becomes empty before the

goal location is found, there is no path to the goal from the start location.

The most promising location on the Open list is determined using an estimated

path cost. This cost consists of two elements: the already incurred cost to reach that

location and the estimated remaining cost from that location to the goal. While the cost

incurred to reach the location currently being examined can be relatively easy to

calculate, the remaining cost to the goal must be estimated through the use of a heuristic,

or a set of loosely defined rules. It is in the definition of a useful heuristic that the

efficiency of an A* search can be most effected. A common heuristic used for simple

path planning is the straight line distance from the location being examined to the goal

location.

One of the reasons that A* is so common is that it has several useful properties.

The first is that if a path exists from the start location to the goal then A* will find a path.

The second property is that if the remaining cost estimate is always an underestimate of

the actual remaining cost to the goal, then A* will find the optimal path from the start

location to the goal. The third property is that A* is the most efficient search method to

use a given heuristic. No search method that uses the same estimate heuristic will find an

optimal path by examining fewer states than A*.

As was stated above, the states in a path search are usually different locations in

the environment. Determining which locations to consider in the path search is a far from

trivial matter. While some environments contain a “natural” set of locations, such as an

underlying square or hexagonal grid, many environments, particularly three dimensional

environments, do not. A variety of methods for partitioning spaces into searchable nodes

exist, and in the end there is no right answer. A particular partitioning technique must be

chosen which complements the environment meets the needs of the programmer.

25

Although cost functions can be very simple, the utility of A* can be greatly

enhanced by including more extensive estimates of incurred and remaining cost. In (van

der Sterren 2002) cost functions are proposed which take into account tactical concerns

such as cover present at given locations and exposure to enemy lines-of-fire. While more

extensive cost functions can result in better path-finding behavior from agents, this

improvement must be counterbalanced with the increased computational costs of

performing an extended search. With intelligent state partitioning and cost functions, A*

can be used to plan paths in almost any situation.

2. Particle Based Communication
In (Klaas et al., 2005) a method for communicating target localization

information based on particle filters is proposed. The technique makes use of a

predictive density that is a mixture of the predictions of individual agents. The primary

difference between this technique and the individual track technique proposed in

(Bererton 2004) is that the master predictive density incorporates observations (weighted

particles) into the whole by adding a weighting factor to individual agent predictions.

Klaas’s predictive density is represented by the following equation:

 1: 1 1 1 1: 1 1(|) (|) (|)
an

t t m t t m t t t
m

p x z p x x p x z dxπ− − − − −= ∑ ∫ (0.21)

In the above equation, mπ is the weighting coefficient for each agent m,

1(|)t tp x x − is the prediction for the current time-step from the previous prediction

density, and 1 1: 1(|)m t tp x z− − is the predictive density for the individual prediction for each

agent m. By replacing the analytical portion of the above equation with a particle filter

approximation, the predictive density becomes:

 () ()() ()
1: 1 1, 1,| |

an N
i i

t t m t m t t m
m i

p x z w p x xπ− − −=∑ ∑ (0.22)

The particle approximation above contains the same weights for individual

observers (mπ) with each individual prediction taking the form of a weighted mean of

that individual’s particles. The basic particle filter update algorithm for this method is

very similar to that provided in (Bererton 2004) with the exception that no re-sampling

26

step is required. This is due to the fact that the predictive density is a mixture of particles

from several agents, all of which resample their individual distributions as needed.

The predictive density technique as described so far assumes that the particles

from individual agents are available at every time step, indicating constant

communication among agents. Sporadic communication can be accomplished by

changing the weighting factors (mπ) when a specific agent is not communicating during a

given time-step. The size of messages (sets of particles) passed between agents can also

be limited to either save computation or impose realistic communications constraints on

the process. If the size of the communication allowed is less than the number of particles

contained in a filter, the agent can sample their own particle filter the required number of

times and send the resultant particles as their communication.

If sporadic communication is allowed, some manner for determining when to send

messages to other agents must be devised. Klaas facilitates sporadic communication by

setting a threshold, τ , which represents the likelihood of all observations since time t’.

When the likelihood drops below this threshold, communication will occur. This

likelihood can be easily computed by examining an individual agent’s particle filter,

specifically the un-normalized weights of the particles.

Recall from the discussion of particle filters above that after a short amount of

time a small number of particles will have large weights while the majority of particles

will have negligible weight. As this begins to occur, the average un-normalized weight

of the particles will drop, indicating that the particle filter is indicating a new “very

likely” position for the target being tracked. It is precisely for this reason that particle

filters renormalize the weights of their particles and resample the distribution as parts of

the update algorithm. By saving the sum of the un-normalized weights of the particles

each time through the algorithm, individual agents can determine when their picture of

the environment has changed sufficiently enough to warrant a communication to the other

agents.

The procedure used by Klaas to trigger sporadic communication is shown below:

1. Save un-normalized weights in particle filtering algorithm: ()
, ,

i
t a t ai

W w∑ =∑ %

27

2. Update likelihood for time t: , , ,t a t a t aL L W ∑= ⋅

3. If ,t aL τ< , trigger communication, reset , 1t aL = .

Although the theoretical model provided by Klaas uses identical weights for the

observations of all the individual agents, Klaas mentions that this need not be the case. A

mixture of weighting techniques such as allowing individual agents to value their own

observations more heavily than others’ could result in a much more realistic (although

not as accurate) distributed tracking state.

Klaas provides several examples showing particle based communication among

several agents. The image below shows one of these examples in which a group of three

agents are attempting to locate an opposing agent in a jungle:

Figure 12. Coordinated Particle Filter Search (From Klaas et al., 2005)

In the figure above, the three agents are searching for a fourth agent represented

by a black “X.” The environment features varying levels of occlusion which reduce the

probability of detecting the target. The searching agents have already determined that the

target is not within the high-visibility areas of the environment and have shared this

information with each other, resulting in very few particles in those regions. The gray

28

areas, with reduced probability of detection, have a correspondingly higher concentration

of particles. A smoothed probability density corresponding to the situation above is

shown below:

Figure 13. Probability Density Corresponding to Jungle Search (From Klaas et al., 2005)

29

III. MODEL

A. ENVIRONMENT
The typical environment in a military simulation differs greatly from the game

environments for which particle based tracking was first proposed. While the test

environment used in this work is relatively simple, its characteristics are sufficiently

different from typical game environments to warrant a slightly different particle tracking

technique than that proposed in (Bererton 2004). The characteristics of this environment

are discussed below.

1. Characteristics

The environment chosen for use in this work closely resembles an “open ocean”

environment. The environment contains a large amount of space compared to many

game environments, and it is for all practical purposes devoid of obstructions. By

limiting the agents in this test model to those resembling ships, the detection and tracking

process can be limited to one that is essentially two dimensional in nature. Additionally,

organic sensors used to detect other platforms will have comparable ranges due to the

curvature of the Earth. With a large amount of space and limited active detection ranges,

the majority of detections occurring within the simulation will be passive in nature.

Theses detections will be largely uncertain, and the particle filter technique’s ability to

accurately track other platforms through passive means will be readily evident.

Ship-like platforms moving through the open ocean also have a very low speed in

comparison to amount of space in the environment. This results in placing increased

importance on determining the heading and speed of opposing targets. In order to

effectively maneuver to force contact with a platform with similar capabilities, agents in

this environment must be able to effectively estimate other agents’ headings and speeds

from their particle filter tracks on these agents. Simply moving towards the mean of the

particle filter representation of another platform’s position would be an unattractive

method of searching, as it would most likely result in a “tail chase” with little possibility

of acquiring a firm track on the target.

30

In order to focus on the utility of particle filter tracking techniques all platforms in

this environment are capable of completely disambiguating emissions from other

platforms. In other words, if a platform passively detects several other platforms in the

course of a simulation, it will be able to correlate these detections exactly with their

corresponding platforms. While there are certain passive sensors which are capable of

this level of sensor disambiguation, such as sonar, most do not have this capability. As

track correlation is a rather large and complicated field of study, track disambiguation is

left out of this initial work. While agents in this environment can exactly correlate

detections to corresponding entities, they have no prior knowledge of the locations or

states of other platforms. Indeed, as will become clear when the particle filter tracking

technique is fleshed out below, they will never have complete knowledge of other

platforms, and will be forced to deduce this information from the state of their particle

based tracks.

There are no weapons represented in this environment. Individual agents move

through the environment for the sole purpose of sensing and tracking other platforms.

The addition of engagement capabilities would have added tactical implications to the act

of sensing and tracking, and thus are beyond the scope of this work.

2. Implementation
A simple simulation environment was created in Java utilizing the Simkit package

(Buss 2002). Simkit is a library which supports the creation of component based discrete

event simulation models. In discrete event simulations time does not advance in so called

time-steps. Instead, simulation time is immediately advanced to the time of the next

occurring event in the simulation. When an event is processed, corresponding state

variables within the simulation are altered, further events are scheduled or canceled as

appropriate, and time is advanced to the next scheduled event. The display window

which shows the state of the simulation is a Java2D display. The size of the simulation

environment was variable, but the display was always partitioned into 10x10 grid squares

to provide a visual reference of position. Each unit of distance in the simulation roughly

corresponded to one nautical mile. Thus the empty environment pictured below consists

of a 100nm x 100nm area.

31

Figure 14. Empty 100 by 100 Simulation Environment

Two different sides consisting of any number entities were represented in the

simulation. Each side was represented in the visual display using a simple icon and

identifying color. As the two colors chosen were blue and red, through the rest of the

work entities on corresponding sides will be referred to using this color (e.g. red’s track

of blue). The figure below shows the appearance of a base blue entity on the left and a

corresponding red entity on the right.

Figure 15. Appearance of Base Blue and Red Entities

The course (or heading) of entities in this environment are given in degrees. A

heading of 0/360 degrees corresponds to “up” or due north on the screen and headings

proceed clockwise in the manner of compasses or gyro repeaters. One simulation time

unit was picked to roughly correspond to one minute, and entity speeds are given in

distance traveled in one simulation hour (60 simulation minutes). Both of these

32

conventions are used to draw speed leaders on platforms in the environment. These

speed leaders are simply lines drawn from the center of an entity’s icon extending in the

direction in which they are headed. The length of the leader is determined by the current

speed of the entity. The end of the leader shows where a platform will be located in 15

simulation minutes if it maintains its current course and speed. The figure below shows

four different entities with different courses and speeds.

Figure 16. Speed Leaders Representing Various Courses and Speeds

All platforms in the simulation were equipped with identical sensor suites. These

sensors consisted of a continually operational passive sensor of relatively short range

(visual), an intermittently operable active sensor of longer range (radar), and an

additional passive sensor capable of detecting emissions of other agents’ radar type

sensor. Each sensor type had an associated range and bearing ambiguity for the purpose

of turning detections into particle based tracks. Although the particle filter tracking

techniques employed varied as described in further sections, the characteristics of the

sensors were constant throughout the development of the tracking methods and so are

detailed below.

Sensor Max Range Counter Detection

Range

Range

Ambiguity

Bearing

Ambiguity

Sweep

Time

Visual 10.0 N/A 0.3 1.5± ° 0.2

Radar Detector 60.0 N/A 0.8 5.0± ° N/A

Radar 30.0 60.0 0.05 1.0± ° 0.02

Table 1. Simulation Sensor Parameters

33

Sensors are cookie cutter sensors as described in (Buss 2005). That is, if a sensor

is enabled and there is another platform within the detection or counter detection range of

that sensor, than detection will occur as a result. The range and bearing ambiguity

parameters will be discussed in further detail in following sections. The sweep time

refers to how long it takes a given sensor to complete a 360 degree sweep of the

environment. While a sensor is operating it attempts to detect other platforms in every

sweep time interval. For the radar sensor this can be equated to the time it takes for the

antenna to rotate one time (1.2 seconds this simulation) and for the visual sensor the

amount of time it takes a lookout to identify and report a contact (12 seconds). Note that

the radar detector does not possess a sweep time, as it is continually “listening” for other

entities’ radar emissions. All of the values above were chosen arbitrarily and do not

attempt to represent existing sensor systems with a high level of fidelity.

When a sensor is operating it is drawn as a circle with the proper radius centered

at the location of its owning platform. The visual sensor is drawn as a light blue circle,

radar as a yellow circle, and the radar detector as a dashed red circle. A figure showing

the appearance of operating sensors is shown below. The blue platform is operating its

visual and radar detecting sensors. The red platform is operating those same sensors with

the addition of its radar.

34

Figure 17. Simulation Sensor Arc Appearance

When a detection occurs within the environment, a particle-based track will be

created and maintained using the methods described in the sections below. A track

corresponds to an entity’s estimation of the location, heading, and speed of another entity

in the environment based on a series of detections. This track can be drawn on the

representation of the simulation environment. The particles constituting this track are

drawn in a lighter color of the platform which owns the track. A blue track of a red entity

will be drawn using cyan particles and a red track of a blue entity will be drawn using

orange particles. The tracks are used to create estimated positions, headings, and speeds

of opposing platforms. These estimated positions are drawn as a white square with an

associated speed leader. The figure below shows the appearance of a blue track (of a red

platform) which has been acquired using its radar detector with associated estimated

position.

35

Figure 18. Basic Track Appearance

Platforms move through the environment using a waypoint system. Waypoints

can represent either a discrete location in the simulation environment or an area of the

environment. Patrol plans consisting of a series of waypoints can be transited either in a

set or pseudo-random order. An area being used as a patrol plan is transited by randomly

selecting points uniformly distributed across the area either once or multiple times

depending on the context in which it is used. Patrol plans are also mutable, and a

rudimentary path-finding system based on the particle tracks an entity holds is described

in detail in a later section. When patrol plans are displayed in the visualization of the

simulation, waypoints are displayed as either a green circle or box (depending on if the

waypoint is a location or an area) with a series of green lines connecting waypoints in the

order in which they will be traversed. Course changes happen instantaneously when an

entity reaches a given waypoint and heads towards another. The figure below shows the

appearance of patrol plans when they are drawn. The blue entity will traverse a series of

four points and the red entity will patrol the area represented by the green box.

36

Figure 19. Patrol Plan Appearance

Platforms operate their radar-type sensors according to a radiation plan. For this

work those plans were relatively simple. They consist of a simulation start time for the

first operation of the radar, the length of time to operate the radar, and the interval of time

to remain silent in between radar operation periods. While the radar is operating, it will

continually sweep the area of the environment within its range for opposing targets. Due

to the small sweep time of the radar-type sensor, even a relatively short period of

radiation will result in many possible detections or counter detections.

All entities in the environment are registered with a sensor mediator as described

in (Buss 2005). When sensor sweep events are pulled off the event queue, the entity

which scheduled the event forwards its current position and sensor information to the

mediator for processing. The mediator uses this information to determine the number and

type of detection events which will occur and will create new tracks or update existing

tracks based on the situation. These new or updated tracks are then returned to their

corresponding owners for further use. The detection events managed by the sensor

mediator drive the creation and maintenance of the particle based tracks owned by

platforms in the simulation. The nature of these tracks is described in detail below.

B. PARTICLE TRACKING TECHNIQUE
The particle tracking technique described below attempts to provide accurate

position, heading, and speed information about another platform to its owning entity.

Due to the nature of the simulation environment, it must be able to accomplish this goal

37

for large numbers of relatively exact active detections, a small number of highly

uncertain passive detections, and everything in between.

In order to handle a wide variety of detections, an intelligent method must be

devised for creating initial distributions of particles when another platform is detected for

the first time. The technique proposed in this research is different from that used in

(Bererton 2004) and is detailed in the Track Creation section below. Additionally, there

must be a means to update distribution of particles in a track based on updated detection

information or disqualification of a previous distribution. The methods used in this work

are detailed in the Track Maintenance section.

Following the creation of methods to enable the two previous requirements, it

became evident that including a small amount of intelligence in individual particles could

be used to increase the utility and accuracy of the particle based track in certain

situations. This lead to the development of several simple particle based behaviors which

demonstrate the possible usefulness of this idea. These changes to the base particle filter

are described in the Contextual Particles section.

1. Track Creation
Tracks are created when the sensor mediator processes a valid detection event of

another platform for the first time by a given entity. Note that a detection can take the

form of an accurate radar or visual detection or an uncertain counter-detection of another

entity’s radar via a radar detector. Due to the large distances and relatively short range of

platforms’ sensors in this simulation, the majority of detection events encountered were

of the later variety. However, the temptation to optimize this tracking method to handle

these types of detections was avoided in order to ensure that it would be able to

effectively represent all manner of detections.

The sensor mediator creates a new track in two steps. The first step is the creation

of a detection distribution. The method used to create this distribution is generic and can

therefore be used for both active and passive detections. The second step is to create a

large number of particles which take the form of a large number of weighted samples

from this distribution. Once these two steps are complete the resultant collection of

particles is forwarded to the corresponding entity for use. Even without further

38

refinement, this new collection of particles can be used to create a rough estimated

position of the tracked platform. An in depth review of initial detection distributions,

distribution sampling, and estimated position creation is provided below.

a. Initial Detection Distributions
In (Bererton 2004), an initial distribution of particles distributed randomly

throughout the environment is used. This allows an entity to start with no knowledge

regarding the whereabouts of the target it is attempting to localize. Bererton also

proposed that some prior knowledge of target location could be used to create an initial

distribution. This second proposal for an initial distribution makes more sense for a

military simulation due to the size of the environment. While this test-bed simulation

starts with no prior distribution of possible target locations in the environment, including

this feature in an actual simulation could be accomplished with little difficulty.

This simulation creates an initial distribution based on the first detection

event of a given entity for the detection platform. In this environment these distributions

have three components: a location component, a heading component, and a speed

component. Of these three elements, the location component is the most troublesome to

create. Due to the vast range of detection types which could occur in a military

simulation, a generic method for representing location distributions is presented which

allows detection events to accurately model the level of uncertainty inherent in both

active and passive detections.

The generic location component as proposed here requires three

parameters. These are: the actual bearing and range of the detected entity, the bearing

ambiguity of the detection, and the range ambiguity of the detection. The figure below

shows these three parameters.

39

Figure 20. Location Component of Initial Detection Distribution

The actual bearing and range of the target is readily available to the sensor

mediator which contains links to all the entities in the simulation. The range and bearing

ambiguities are dependent on the sensors involved in the detection. As every entity

contains information regarding the capabilities of its sensor suite, this information is also

available for the construction of the location distribution. These pieces of information are

used by the mediator to calculate the minimum and maximum ranges and bearings of the

location distribution that will result from the detection. These four values are illustrated

below.

Figure 21. Location Distribution Parameters

40

In this simulation the sensor characteristics are as shown below:

Sensor Max Range Counter Detection

Range

Range

Ambiguity

Bearing

Ambiguity

Sweep

Time

Visual 10.0 N/A 0.3 1.5± ° 0.2

Radar Detector 60.0 N/A 0.8 5.0± ° N/A

Radar 30.0 60.0 0.05 1.0± ° 0.02

Table 2. Simulation Sensor Parameters

The minimum and maximum bearings are readily calculated using the

provided bearing ambiguity and the actual bearing of the target at the time of the

detection. Minimum and maximum ranges are calculated using the actual range and the

range ambiguity of the corresponding sensor. Range ambiguity is represented as perfect

(no error) with a value of 0.0 up to none (no range information whatsoever) with a value

of 1.0. Thus the calculations carried out to define a location distribution in this

simulation are as shown below.

Calculate bearings (min,maxBrg) based on actual bearing (actBrg) and

sensor ambiguity (brgAmb):

 min act brgBrg Brg Amb= − (0.23)

 max act brgBrg Brg Amb= + (0.24)

Calculate ranges (min,maxRng) based on actual range (actRng), sensor

ambiguity (rngAmb), and range of the detecting sensor (sensorRng):

 ()min max ,0act act rngRng Rng Rng Amb= − (0.25)

 ()max min ,act act rng sensorRng Rng Rng Amb Rng= + (0.26)

Note that in this simulation all location distributions will have their

bearings centered about the actual bearing of the target. More complicated sensor models

41

could easily change this, as the only important result is that the location distribution has

two boundaries on bearing. Regardless of the range ambiguity of the detection sensor,

the range boundaries will never result in possible locations “behind” the detector or out of

range of the detecting sensor. More complicated range calculations could also be used to

determine these boundaries, such as bounding the lower range not at the location of the

detector but at the range of other operating sensors with lower detection ranges. The

figure below shows the effect of differing bearing and range ambiguities on the location

distributions that the sensor mediator will construct. In (a) a distribution with small

bearing and range ambiguities (relative to the other examples) is shown. In (b) and (c)

distributions with good bearing/bad range and bad bearing/good range ambiguities are

shown. In (d) a distribution with both high bearing and range ambiguities is shown.

42

(a)

(b)

(c)

(d)

Figure 22. Location Distributions with Differing Bearing/Range Ambiguities

The other two components of an initial detection distribution are the

heading and speed components. With no prior knowledge of target heading, as is the

case in this simulation, the initial heading distribution encompasses all possible headings

[0, 360]. The speed distribution likewise encompasses all possible speeds from standing

still to the maximum speed of entities in this simulation [0, 32]. Given some prior

knowledge of target intent or capabilities, the nature of these distributions could easily be

changed. Although it is not the case in this simulation, it is possible to give entities

incorrect information about both the movement and sensing capabilities and intents of

opposing entities. As the sensor mediator constructs detection distributions according to

the detecting entity’s knowledge base, the detection distribution created would reflect

43

these misconceptions and provide inaccurate track information to the detecting platform.

A figure showing the components of a complete detection distribution is provided below.

Figure 23. Components of an Initial Detection Distribution

b. Detection Distribution Sampling
Once the sensor mediator has constructed the distribution corresponding to

a given initial detection, it will draw a large number of samples from that distribution for

use as particles. Particles in (Bererton 2004) were simply weighted points in space. Due

to the fact that position estimation was of primary interest, particles did not have a motion

model, but were simply moved a random x and y distance at each time step. In order to

extract heading and speed information from particle tracks in initial versions of particle

tracks in this simulation, individual particles will have a heading and speed in addition to

a location and weight. The particles created will be naïve of their surroundings. That is,

they will maintain their course and speed until invalidated via one of the techniques

described in later sections.

The parameters of a naïve particles and corresponding notation which will

be used through the rest of this work are shown below:

44

Naïve Particle inp

Weight X Location Y Location X Velocity Y Velocity

iw ix iy ivx ivy

Table 3. Naïve Particle Parameters

Creating a particle track from an initial detection distribution requires

sampling from the distribution sN times. Each sample requires four pseudo-random

draws: two from the location distribution and one each from the heading and speed

distributions. The results of these four draws along with the position of the detecting

platform (,x yPos) are used to calculate the parameters of each particle. The process of

sampling from the detection distribution to obtain a particle based track is shown on the

next page.

45

Sample from Initial Detection Distribution

FOR 1: si N= ***Generate Initial Detection Distribution***

 min max[,]iBrg U Brg Brg= ***Draw Bearing of Particle***

 min max[,]iRng U Rng Rng= ***Draw Range of Particle***

 min max[,]iHdg U Hdg Hdg= ***Draw Heading of Particle***

 min max[,]iSpd U Spd Spd= ***Draw Speed of Particle***

 1
i

s

w
N

= ***Set Weight of Particle***

 ()90
180

i
i

Brg
posrad

π −
= ***Change Bearing from Degrees to Radians***

 cos()i x i ix Pos Rng posrad= + ∗ ***Set Particle x Position***

 sin()i y i iy Pos Rng posrad= − ∗ ***Set Particle y Position***

 ()90
180

i
i

Hdg
velrad

π −
= ***Change Heading from Degrees to Radians***

()cos

60
i i

i

Spd velrad
vx

∗
= ***Set x Velocity Component***

()sin

60
i i

i

Spd velrad
vy

− ∗
= ***Set y Velocity Component***

END FOR

Figure 24. Sampling from a Detection Distribution to Create a New Track

In the above process, the subtraction of ninety degrees in the conversion of

degrees to radians is due to the difference between the position of zero degrees in this

simulation and in mathematical conventions. Due to speed represented in the simulation

as distance traveled in one simulation hour, the division by sixty creates a unit vector

pointing in the proper direction.

46

When the above sampling process is complete, sN particles have been

created in a roughly uniform manner from the detection distribution with equal weight.

The four figures below show a new particle track containing 2,500 particles created from

an initial detection distribution. The first figure shows the appearance of the new track in

the visualization window. The following three figures show Parzen-windows estimates

of the distribution density for the heading, speed, and position of an initial detection.

Figure 25. New Track Created by Sampling an Initial Detection Distribution

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

0 45 90 135 180 225 270 315 360

Heading

P(
H

dg
)

Figure 26. Parzen-Windows Approximation of Initial Detection Distribution Heading

Density (Window Width 7.2)

47

0.0000

0.0100

0.0200

0.0300

0.0400

0.0 5.0 10.0 15.0 20.0 25.0 30.0

Speed

P(
Sp

d)

Figure 27. Parzen-Windows Approximation of Initial Detection Distribution Speed Density

(Window Width 1.0)

30 40
50 60

70 80
90 100

40

50

60

70

0.00E+00
2.00E-03
4.00E-03
6.00E-03
8.00E-03
1.00E-02
1.20E-02
1.40E-02
1.60E-02

P(x,y)

x

y

Figure 28. Parzen-Windows Approximation of Initial Detection Distribution Position

Density (Window Width 2.0)

48

c. Estimated Position Calculation

Obtaining an estimated position from a particle track is a trivial process.

The actual utility of using an estimated position versus treating the track as a collection of

possible locations will be discussed in a later section. The estimated position at a given

point in time can be calculated by computing the weighted average of the particles

currently in the track. In order for this position to be valid, the sum of the weights of

particles in the track must sum to one. An estimated position for a track containing sN

naïve particles is computed using the procedure shown below.

Estimated Position Calculation

FOR 1: si N= ***Compute Estimated Position of Entity being Tracked***

 est est i ix x w x= + ***Compute Estimated x***

 est est i iy y w y= + ***Compute Estimated y***

 est est i ivx vx w vx= + ***Compute Estimated x Velocity***

 est est i ivy vy w vy= + ***Compute Estimated y Velocity***

END FOR

Figure 29. Computing an Estimated Position from a Particle Track

Note that the above procedure computes an estimated x and y velocity.

This can be converted to a [0, 360] heading and [0, max speed] speed using similar

mathematical procedures to those shown in the initial detection distribution creation

section. Additionally, if no particles have been added to or removed from the track using

one or more of the methods described in future sections, then the estimated heading and

speed will be unchanged and does not need to be computed.

2. Track Maintenance

Tracks constructed using the above detection distribution and sampling method

adequately describe the initial areas of uncertainty resulting from the detection of new

entities. Additionally, these tracks are immediately useful in providing rough estimated

positions, albeit with heading and speed information of dubious utility. If these initial

49

tracks were used without modification throughout the simulation, the areas of uncertainty

they represent would expand according to the member particles’ heading and speed

information until they encompassed the entire environment. In order to prevent this and

to allow entities to continually refine their estimates of the positions, headings, and

speeds of opposing platforms, methods were provided to disqualify groups of particles

and repopulate the track with new groups of particles.

a. Particle Disqualification
In (Bererton 2004) individual particles were removed from the distribution

by reducing the weight of observed particles (which did not result in an acquisition of the

target) and then re-sampling the population. Particles with very small or zero weights

would not be included in the re-sampled distribution as often and can thus be removed

from consideration. In this simulation, rather than reducing the weights of particles

which come under observation without an acquisition occurring, they are disqualified

from consideration by removing them from the collection of particles currently contained

in the track. The weights of particles which are still valid are renormalized so that the

sum of weights in the particle track will remain one.

The disqualification of particles takes place through the observations of

the tracking entity. As this simulation is a discrete event simulation, these observations

take the form of sensor sweep events being processed by the sensor mediator. The

actions taken when a sensor sweep results in the detection or counter-detection of an

opposing entity for the first time were described in a preceding section. Once a track

exists for a given target, further sensor sweep events may result in another detection

event or a sanitization event.

Detection events occurring for a target which is already held in a track by

the detecting entity will result in a disqualification of particles from the current track if

those particles do not fall inside the area of the new detection. This area is essentially an

abbreviated initial detection distribution consisting only of the position component. Once

the sensor mediator has constructed the position distribution from the detecting entity’s

sensor information, it compares the new distribution to the particles in the detector’s

current track. Those particles which fall outside this distribution are disqualified and

removed from consideration. Depending on the natures of the previous and current

50

detections, a large number of particles can be disqualified using this method. The figure

below illustrates the disqualification of particles through new detection events. In (a), the

blue platform has an inexact track of the red platform acquired via its radar detector. In

(b), the blue platform has turned on its radar and achieved an active detection of the red

platform. The majority of the particles in blue’s track have been disqualified, leaving

only those which were in the close vicinity of the new detection.

(a) (b)

Figure 30. Disqualification of Particles via Detection Events

Sensor sweep events can also result in the disqualification of particles

from an existing track through sanitization of areas of the environment. Sanitization

occurs when the area of regard of the tracker’s sweeping sensor overlaps the position of

one or more particles currently held in its track of another entity. In environments with

low numbers of active detections, the ability to sanitize areas of the environment allows

entities to make better use of passive or very time late detections which have spread over

large portions of the environment. Note that in this simulation, as every entity

continually operates its visual sensor, platforms are able to constantly sanitize the area of

the environment falling within visual range. With a longer range, the radar sensor is a

more effective sensor for sanitizing areas of the environment, but it carries with its use

the possibility of counter detection by opposing platforms.

Disqualification of particles through sanitization is achieved in the same

manner as through detection events with one exception. This exception is the nature of

the abbreviated detection distribution against which to test particles. The position

distribution used for sanitization has range parameters [0, max sensor range] and bearing

51

parameters [0, 360]. This equates to a position distribution consisting of the footprint of

the sensor. This sanitization distribution is then compared to the particles residing in the

entity’s current track of another platform. Any particles following inside this distribution

will be disqualified and removed from consideration.

The following figure illustrates the disqualification of particles through

sanitization. In (a), the blue platform has been operating its radar, allowing red to track it

passively. In (b), the blue platform has secured its radar and continued moving to the

southwest. Red’s passive track of blue has been expanding based on the headings and

speeds of its member particles. In (c), the red platform has turned on its radar. Although

the blue platform has moved out of red’s radar range, all the particles in red’s passive

track of blue which fell inside the operating radar’s footprint have been disqualified and

removed from consideration. Notice the improvement in the red platform’s estimated

heading and speed for the blue platform obtained by disqualifying a large number of

particles.

52

(a) (b)

(c)

Figure 31. Particle Disqualification via Sanitization

b. Repopulation Algorithms
The disqualification of particles through additional detections and

sanitization allows entities to refine their tracks of opposing entities through continued

observation of the environment. These refinements result in increasing accuracy in the

estimated positions, headings, and speeds of tracked platforms. However, if the only

means of altering the track following a detection was the continued disqualification of

particles, there could be a real possibility of disqualifying all the particles in the track.

While losing a track is a possibility that needs to be allowed for, the need exists to

repopulate the tracks with new valid particles when the opportunity presents itself.

Four methods for repopulating tracks with new particles were

implemented in this simulation. The first method is used to replace particles when new

detections or sanitizations have not resulted in a drastic alteration of the track state and is

53

similar to the sampling importance re-sampling method described in (Arulampalam,

2002). This technique is described in the partial repopulation section below. The second

and third methods for carrying out repopulation are used when a new detection or

sanitization has resulted in the disqualification of a large number of particles, providing a

vastly different picture of the tracked platform’s state, and are similar to the

regularization re-sampling method described in (Arulampalam, 2002). These techniques

are discussed in the weighted position and estimated heading bulk repopulation sections

below. The last repopulation algorithm is a bulk repopulation algorithm which combines

the weighted position and estimated heading bulk repopulation methods. This algorithm

is discussed in the combined bulk repopulation section below. One of the difficulties

associated with both of these repopulation methods is the possibility that some of the

repopulated particles will be inconsistent with prior observations. To some extent this

problem cannot be solved without providing the tracking platform with knowledge of the

actual location of the tracked entity. The two bulk repopulation algorithms described

below attempt to minimize the impact of inconsistent particles on the particle track

through two different methods.

Although the repopulation methods resemble the re-sampling methods

described in (Arulampalam, 2002) and (Bererton, 2004), they are slightly different due to

the discrete event nature of this particular simulation. The re-sampling methods

described in the above two works, in addition to preventing degeneracy problems,

ensured that the particle filter was filled with an identical number of particles following

each update. The repopulation algorithms described in this work are not run at every

update of the particle filter. Instead, they are run when the number of valid particles

remaining in the track falls below a certain threshold. These thresholds are similar to the

sporadic communication thresholds described in (Klaas et al 2005). When the track

information changes by a significant amount (as represented by the thresholds) one of the

repopulation methods will be triggered to refill the track with new particles which

represent the new track picture. Allowing particles to be disqualified from the track with

the possibility of no repopulation results in a greater number of particles to be

disqualified which results in better heading and speed estimations. There are two

54

thresholds associated with every particle track. The higher threshold is the one that

triggers the partial repopulation algorithm. The lower threshold triggers one of the bulk

repopulation algorithms.

Partial Repopulation Algorithm – The partial repopulation

algorithm will be utilized when the disqualification of particles via detection or

sanitization events has caused the ratio of valid particles remaining in the track to drop

below a certain threshold. This repopulation technique is used to refill the particle track

to its maximum capacity with valid particles. These new particles will take the form of

duplicates of particles which are still considered valid. Valid particles are chosen for

duplication in a manner similar to the re-sampling algorithm presented in (Arulampalam

et al. 2001). A random draw will be compared against the weights of the particles still

remaining in the track, with the result that particle with higher weights will have a higher

probability of being duplicated during the repopulation process. Following the addition

of new particles, the weights of the particles will be renormalized. The partial

repopulation algorithm is presented in pseudo-code on the next page.

55

Partial Repopulation Algorithm

1 0c = ***Initialize CDF***

FOR 2 : validi N= ***Construct CDF***

 1i i ic c w−= +

END FOR

FOR 1: sj I=

 [0,1]ju U= ***Get Random Draw***

 1i = ***Start at Bottom of CDF***

 WHILE j iu c> ***Move Along CDF***

 1i i= +

 END WHILE

 ; ; ; ;I I I I I
j i j i j i j i j ix x y y vx vx vy vy w w= = = = = ***Create Duplicate Particle***

END FOR

FOR 1: sk I= ***Move Duplicate Particles to Valid Particles***

 S k kN I+ =

END FOR

Renormalize

Figure 32. Partial Repopulation Algorithm

Note that due to the movement model of naïve particles (never

changing heading or speed) over many partial repopulations there will be a large number

of particles coincident at several points in the environment. As this is a relatively

inefficient use of a large number of particles, a different movement model for particles

which allowed the calculation of accurate headings and speeds while achieving a spread

56

in the particle filter was implemented. This movement model will be described

in the contextual particles section below.

This repopulation method is not suitable for maintaining a particle

track in all cases. While it does an excellent job of capturing the location, heading, and

speed of contacts which do not maneuver, it can fail on a maneuvering target. This

concept is shown in the figure below. In (a), the blue platform’s continued use of partial

repopulation has resulted in an excellent track of the red platform. In (b), the red

platform has executed a significant course change. If a detection or counter-detection of

the red platform were to occur at this point, all the particles in blue’s track would be

disqualified, resulting in no means to perform a partial repopulation of the track.

(a) (b)

Figure 33. Unsuitability of Partial Repopulation as Sole Repopulation Method

In (Bererton 2004) if a track is lost due to observation of all the

particles in a track without a target acquisition, the distribution of particles is reset to the

initial distribution. Bererton’s initial distribution consisted of the particles being

uniformly distributed throughout the environment. While there is an initial distribution in

this work, the initial detection distribution, it will not be used to regenerate a track which

is not suitable for partial repopulation. Instead, two bulk repopulation algorithms are

provided which generate a new set of particles based on a detection event and an old

estimated position.

Weighted Position Bulk Repopulation Algorithm – In the event

that a new detection event results in the disqualification of a very large number of

57

particles, this algorithm will attempt to create a new diverse particle track which reflects

information from a past estimated position. This algorithm will be used to repopulate the

track when the number of valid particles remaining in the track falls below a certain

threshold due to the disqualification of particles from a new detection (not sanitization)

event. New particles will be added to the track based on the detection distribution created

by the sensor mediator to reflect the event. These particles will have positions, headings,

and speeds varied uniformly across the distribution. The reflection of past tracking

information will be taken into account by varying the weights of the new particles based

on their distance from the last estimated position acquired via a detection event.

The weighting of new particles is accomplished by comparing their

position to the location and speed of the last estimated position. Particles whose

locations could be reached with little modification in speed on the part of the tracked

target will be weighted higher than those particles whose locations require a significant

change in speed by the target. The exact weighting of particles is determined by

constructing a window around the estimated speed from the last detection and

determining where in this window the speed required to reach the location of the new

particle falls. A speed window with no numeric values is shown below.

Est Speed High SpeedLow Speed
Figure 34. Blank Speed Window

While the minimum speed required to move from the old estimated

position to the position of a new particle will never fall below zero, it is very possible that

the maximum speed could be well above the maximum speed available to entities in the

simulation. This requires that the low end of the speed window be allowed to extend

below a speed of zero to ensure that the window is centered on the estimated speed.

Speeds corresponding to the low and high ends are computed based on the old estimated

speed. These values are computed as shown below.

58

DETERMINING END SPEEDS OF SPEED

WINDOW

0ls =

hs MAXSPD=

IF
2est

MAXSPDs ≤

 2*l ests s MAXSPD= −

ELSE

 2*h ests s=

Figure 35. Determining Ends of Speed Window for Position Bulk Repopulation Algorithm

Applying the above calculations to an estimated speed of ten with

a maximum speed of thirty-two would yield the following speed window:

10 32-12

Figure 36. Speed Window for Estimated Speed of Ten

Applying the same calculations to an estimated speed of twenty-

seven with a maximum speed of forty results in the following speed window:

27 540
Figure 37. Speed Window for Estimated Speed of Twenty-Seven

Once the speed window is constructed, it is used to weight new

particles being added to the track. The speed necessary to reach the new particle’s

location is computed based on the distance between this location and the old estimated

position and the amount of simulation time elapsed from the creation of the estimated

position. Once this speed is determined, the speed of the estimated position is subtracted

59

from it. Differences resulting in negative numbers indicate that the speed needed to reach

the new particle is less than the estimated speed, and positive results indicate that the

needed speed is greater. The distance of the calculated speed from its corresponding

endpoint is found and used as the weight of the new particle. This will result in particles

whose locations can be reached at exactly the estimated speed having maximum weight

and those with required speeds far from the estimated speed having smaller weights. The

two charts below show the weights which would be assigned to particles with various

speed requirements for estimated position speeds of ten (a) and twenty-seven (b).

0.0

5.0

10.0

15.0

20.0

25.0

-12 -1 10 21 32

Required Speed

A
ss

ig
ne

d
W

ei
gh

t

(a)

0.0

10.0

20.0

30.0

0 9 18 27 36 45 54

Required Speed

A
ss

ig
ne

d
W

ei
gh

t

(b)

Figure 38. Assigned Weights for Various Required Speeds Based on Estimated Position
Speeds of Ten (a) and Twenty-Seven (b)

Due to the possibility of required speeds increasing above the high

end of the window, the minimum weight needs to be clamped at an arbitrarily small

number to prevent excessive speed requirements resulting in negative particle weights.

For example, in the speed window constructed above for a speed of ten, a required

particle speed of forty without this clamp would result in a particle weight of negative

60

eight. In this simulation weight values were clamped at 0.1 to avoid having particles with

zero weight in the track as a result of this repopulation algorithm. The possibility also

exists for some particles to still remain in the track when this algorithm is used to

repopulate the track. These particles are assigned the maximum weight obtainable

through the use of this algorithm and maintained in the track. Following the assignment

of these large weights to the particles the weights must be renormalized so that the sum of

all particle weights in the track equal one. Note that the only attribute of new particles

which are affected by this algorithm are the weights. The location, heading, and speed of

all new particles will be drawn randomly from the detection distribution forwarded to the

tracking entity by the sensor mediator. The complete Weighted Position Bulk

Repopulation Algorithm is shown on the next page.

61

Weighted Position Bulk Repopulation Algorithm

Calculate Speed Window

FOR 1: si N= ***Set Weight of Remaining Particles to Maximum***

 i h estw s s= −

END FOR

FOR 1: sj I= ***Redefine Invalid Particles***

 , , , []j j j jx y vx vy U Detection= ***Values from Detection Distribution***

 () ()2 2

j j est j estd x x y y= − + − ***Compute Distance from Est Posit***

60*req j

cur est

s d
t t

=
−

 Compute Speed Required

 diff req ests s s= − ***Find Speed Difference***

 IF 0diffs < ***Assign Appropriate Weights***

 minmax(,)j req lw s s w= −

 ELSE

 minmax(,)j h reqw s s w= −

 s j jN I+ = ***Move New Particle to Track***

END FOR

Renormalize

Figure 39. Weighted Position Bulk Repopulation Algorithm

62

The effect of using this repopulation method on an existing particle

track is shown in the figure below. In (a), the red platform has a track on the blue

platform which is the result of an initial detection. In (b), the blue platform has turned on

its radar, resulting in a counter-detection by the red platform. Due to the large number of

particles which were disqualified, the weighted position bulk repopulation algorithm was

used to repopulate the track. The picture in (c) is the result of the same situation with a

different repopulation method employed. Notice how the estimated position in (b) is

skewed towards the actual position of the blue platform despite the large number of

particles in the “neck” of the detection distribution.

(a)

(b) (c)

Figure 40. Result of Applying the Weighted Position Bulk Repopulation Method

A Parzen-windows estimate of the weight distribution density of

the particle track following the application of the weighted position algorithm in the

63

above situation is shown below. The surface in the figure corresponds to the weights of

particles present at the x and y positions of the track shown in (b) of the above figure.

Note that the majority of the weight is towards the lower left of the track as opposed to

the upper-right despite that fact that the actual concentration of particles is higher in the

upper-right portion of the track.

10 20 30 40 50 60 70
7

21

35

49

1.00E-01

1.40E-01

1.80E-01

P(x,y)

x

y

Figure 41. Parzen-Windows Approximation of the Weight Distribution Density for a Track

Following Weighted Position Bulk Repopulation (Window Width 44 10−×)

Estimated Heading and Speed Bulk Repopulation Algorithm –

This algorithm also attempts to repopulate a particle track by taking into account a past

estimated position. Like the weighted position repopulation algorithm, it is triggered by a

detection event which results in the disqualification of a large number of particles from a

track. A threshold ratio of the remaining number of particles is used to decide if a

sufficiently large number of particles were disqualified. Rather than changing the

weights of particles based on their distance from the last estimated position, this

algorithm will alter the heading and speed of particles based on their orientation to the

last estimated position.

The alteration of headings and speeds is accomplished by first

filling the new detection distribution with uniformly distributed particles. The location of

64

each of these new particles is then used to calculate the course and speed needed from the

old estimated position to reach the new particle’s location. In order to allow for changes

to course and speed by the target at any point, half of the particles are left with random

courses and speeds. All of the new particle will be weighted equally with the average

weight of any particles remaining in the track. This process is shown on the next page.

65

Estimated Heading and Speed Bulk Repopulation Algorithm

Find avgw ***Find Average Weight of Remaining Particles***

FOR 1: sj I= ***Redefine Invalid Particles***

 j avgw w=

 , []j jx y U Detection= ***Positions from Detection Distribution***

 [0,1]ju U=

 IF 0.5ju <

 () ()2 2

j j est j estd x x y y= − + − ***Find Distance Traveled

60min * ,j j

cur est

s d MAXSPD
t t

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 Find Speed Needed

 (), , ,j est est j jhdg BearingTo x y x y=

()cos

60
j j

j

s hdg
vx

∗
= ***Set x Velocity Component, Hdg in Radians***

()sin

60
i j

j

s hdg
vy

− ∗
= ***Set y Velocity Component***

 ELSE

 , []j jvx vy U Detection= ***Values from Detection Distribution***

END FOR

Move Invalid Particles to Valid Particles

Renormalize

Figure 42. Estimated Heading and Speed Bulk Repopulation Algorithm

66

The result of applying this algorithm is a completely repopulated

particle track with half of the particles having courses and speeds which “fan” out from

the old estimated position. This is shown in the figure below. In (a), the blue platform

has an accurate track on the red platform. This picture is taken right after the blue

platform has turned off its radar, so the estimated position shown will be the one used in

the repopulation algorithm. In (b), the red platform has made a significant course change.

In (c), the red platform has turned on its radar resulting in a counter-detection by the blue

platform. Due to the small number of particles left in the track, the estimated heading

and speed bulk repopulation algorithm has been triggered. Notice the estimated heading

and speed of the contact with relation to the old estimated position in (a). In (d), the red

platform has turned off its radar and time has progressed. The particles which had a

heading and speed assigned based on the estimated position have continued the

movement toward the north-east while the particles with random headings and speeds

have continued to spread out.

(a) (b)

(c) (d)

Figure 43. Result of Applying the Estimated Heading and Speed Bulk Repopulation
Algorithm

67

Parzen-windows estimates of the heading and speed distribution

density of the track following the application of the heading and speed repopulation

method are shown below. Due to the application of the repopulation algorithm, they are

very different from the approximately uniform distribution of headings and speeds which

result from an initial detection.

0.00E+00

2.10E-03

4.20E-03

6.30E-03

8.40E-03

1.05E-02

1.26E-02

0 45 90 135 180 225 270 315 360

Heading

P(
H

dg
)

Figure 44. Parzen-Windows Approximation of Heading Distribution Density Following

Estimated Heading and Speed Bulk Repopulation Method (Window Width 7.2)

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

0.0800

0.0900

0.1000

0.1100

0.0 5.0 10.0 15.0 20.0 25.0 30.0

Speed

P(
Sp

d)

Figure 45. Parzen-Windows Approximation of Speed Distribution Density Following

Estimated Heading and Speed Bulk Repopulation Method (Window Width 1.0)

68

Combined Bulk Repopulation Method - It is possible to combine the two

bulk repopulation methods described above into one bulk repopulation method. In the

combined bulk repopulation method, particles will have their heading and speed

computed based on the estimate heading and speed bulk repopulation method and their

weights determined using the weighted position bulk repopulation method. The different

effects of these three bulk repopulation methods are shown below. The red platform’s

track of the blue platform has just undergone bulk repopulation due to an updated

counter-detection of blue’s radar.

Weighted Position Repopulation Estimated Heading and Speed Repopulation

Combined Repopulation

Figure 46. Effects of Different Bulk Repopulation Methods

3. Complete Naïve Particle Track Update Algorithm
The disqualification and repopulation methods described above provide the means

to maintain a particle track after an initial detection and continually refine that track’s

accuracy through its lifespan. Due to the discrete event nature of the simulation, these

methods are not employed on a continual basis but only when a sensor sweep event

occurs through the course of the simulation. When these events occur, particles which no

longer reflect possible locations of the tracked entity can be disqualified and, if

69

appropriate, new particles which do reflect a possible state of a tracked entity can be

added to the track. Putting all of the above techniques together yields the parameters of a

naïve particle track as used in this simulation. These parameters and their corresponding

notation are shown below.

Naïve Particle Track Parameters

Maximum Number of

Particles

Partial Repopulation

Threshold

Bulk Repopulation

Threshold

Bulk Repopulation

Method

maxN Pr Br BR

Table 4. Naïve Particle Track Parameters

With a track existing due to the sampling of an initial detection distribution, the

algorithm employed to update the track at each sensor sweep event is as shown on the

next page.

70

Naïve Particle Track Update Algorithm

FOR 1: Si N= ***Update Particle Positions Based on Time Since Last Event***

 *i i i elapsedx x vx t= + , *i i i elapsedy y vy t= +

END FOR

IF Sweep Event Results in Detection Event

 []i i iI N N Detection= ∀ ∉ ***Disqualify Particles***

 Renormalize Remaining Particles

 IF
max

s
P

N r
N

< AND
max

s
B

N r
N

>

 Repopulate according to Partial Repopulation Algorithm

 IF
max

s
B

N r
N

<

 Repopulate according to BR (Bulk Repopulation Algorithm)

ELSE ***Sweep Event Resulted in Sanitization***

 []i i iI N N Detection= ∀ ∈ ***Disqualify Particles***

 Renormalize Remaining Particles

 IF
max

s
P

N r
N

< AND
max

s
B

N r
N

>

 Repopulate according to Partial Repopulation Algorithm

 IF
max

s
B

N r
N

<

 Discard Track

Calculate New Estimated Position and Store Unless Track Lost

Figure 47. Naïve Particle Track Update Algorithm

71

The algorithm above shows that the only way for a platform in this simulation to

lose a track is to disqualify enough particles through sanitization that the total number

remaining fall below the bulk repopulation threshold. This is due to the fact that no

detection distribution will exist in which to distribute new particles. When a track is lost,

no new estimated position is calculated, saving the older estimated position for use with

the corresponding bulk repopulation method if a new detection event occurs, and all

particles are discarded.

4. Contextual Particles
The naïve particle filter as described above does an admirable job of generating

accurate estimated positions, headings, and speeds for tracked entities in the simulation

for both active and passive tracks. However, the naïve particle approach begins to lose

its effectiveness when the tracked entity begins to maneuver. This issue is particularly

troublesome when tracking via passive means. As several of the examples have shown,

when a tracked entity moves out of detection range and maneuvers, the usefulness of the

track in re-locating the target is questionable if no more detection events are forthcoming.

Contextual particles were developed specifically to counter this weakness in the

naïve particle approach. The primary aim was to allow the extraction of estimated

heading and speed data from a track while at the same time providing for a spread in

track uncertainty in between detection events. A secondary aim was to provide a means

to inject simple movement behaviors into individual particles so that a particular particle

track could represent an uncertainty picture which would occur if the entity being tracked

was behaving in a specific manner. Accomplishment of the first goal is described in the

general particles section below. The extensions to general contextual particles which

addressed the second goal are described in the transitioning particles section below. One

of the strengths of these contextual particles is that they can be substituted for naïve

particles in the particle filter update algorithm with no changes as all differences are

encapsulated in the individual particles.

a. General Contextual Particles
General particles are based on the concept that at any point in time, a

target being tracked may or may not be maneuvering. Naïve particles, in a manner

similar to target motion analysis techniques, assume that the heading and course of the

72

target will remain static over the time of the tracking problem. When a target maneuvers,

the tracking problem is “reset” and the process to determine the target’s heading and

speed begins anew. General contextual particles obviate the need to reset the tracking

problem through the use of a particle-level movement model which accounts for the

possibility that the tracked target may change or maintain its course and speed at any

time.

The general contextual particles implement this movement model through

the use of a movement model update algorithm. This algorithm is scheduled for

individual particles at some predetermined interval and when pulled off the event queue

modifies the particle’s state as appropriate. The algorithm relies on a provided

probability of maintaining course and speed (chgp). In this simulation, that probability

was chosen as 0.5, meaning that a particle was equally likely to change or maintain

course and speed at any update time. The simple algorithm for updating a contextual

particle’s movement model is provided below.

General Contextual Particle Update Algorithm

FOR iN ***Each Particle Updates Individually***

[0,1]iu U=

IF i chgu p< ***Particle will Change Course and Speed***

 [0,360]ihdg U= ***Note that these will be converted to ,i ivx vy ***

 [0,]ispd U MAXSPD=

ELSE

 Maintain course and speed (no action)

Figure 48. General Contextual Particle Update Algorithm

Other than the algorithm above, an interval of time between individual

particle updates is required to schedule particle update times with the event queue. In this

simulation, the interval [3.0,15.0] in simulation minutes was used. Using the general

73

contextual particles prevents the duplication of identical particles which occurs when

using the naïve particle filter. This allows greater diversity and provides for an increase

in uncertainty as a function of time since the last detection.

The results from replacing naïve particles with general contextual particles

in a particle filter track are shown in the figure on the next page. In (a) and (b), the blue

platform is using naïve particles to fill its particle track. In (c) and (d), general contextual

particles are being used. In (a) and (c), the estimated position of the red platform is the

result of an active track by the blue platform. The blue platform has just turned off its

radar. In (b) and (d), the red platform has continued to move and made a significant

course change. The naïve particle track presents an estimated position based on the last

known course and speed while the contextual track has spread to reflect the lack of any

detection information in the intervening time periods. If a new detection were to occur,

the naïve track would have to repopulate the track using one of the bulk repopulation

methods while the contextual track would rely on partial repopulation which would result

in a more accurate heading and speed estimate of the red platform.

74

(a) (b)

(c) (d)

Figure 49. Difference between Naïve and General Contextual Particle Tracking

b. Transitioning Contextual Particles
Once the general contextual particle scheme was implemented it became

clear that this method of updating individual particle movement models could be used to

include more complex behavior in the tracks. If a decent and relatively simple behavioral

model was available for entities within the simulation, it could be included in the

individual particle movement models. This concept was tested by allowing general

contextual particles to transition to a more advanced movement model with a small

probability (transp) at each individual particle update cycle. Once a particle was

transitioned, all further particle movement model updates were governed by a different

behavior. This concept is reflected in the transitional contextual particle update

algorithm shown below.

75

Transitional Contextual Particle Update Algorithm

FOR iN ***Each Particle Updates Individually***

IF iN NOT transitioned

 [0,1]iu U=

 IF i chgu p< ***Particle will Change Course and Speed***

 [0,360]ihdg U= ***Note that these will be converted to ,i ivx vy ***

 [0,]ispd U MAXSPD=

 IF i chgu p> AND i chg transu p p< +

 Maintain course and speed (no action)

 IF i transu p> ***Transition Particle

 , []i ivx vy Behavior←

 transitioned = TRUE

ELSE ***Particle has Already Transitioned***

 , []i ivx vy Behavior←

Figure 50. Transitional Contextual Particle Update Algorithm

Two simple transitioned behaviors were implemented in this work to

demonstrate the use of transitional contextual particles. These two behaviors are

“hiding” and “seeking” transitioned behavior. Both of these movement models are based

on a (possibly false) assumption that the platform being tracked either wants to avoid or

force contact. If the assumption is that the platform being tracked wants to avoid contact,

then upon detecting another entity it will change course to a reciprocal bearing of the

detection. For example, a platform attempting to avoid detection gains a track on an

opposing platform due west (270 degrees) of its current location. The avoiding platform

would then turn to a new course directly away from the bearing of the other platform, in

this case due east (90 degrees). With a similar maximum speed to other entities, this

76

reciprocal course will offer the best chance of forcing another platform to engage in a tail

chase to acquire the target. If the assumption is that the platform being tracked wants to

force contact, then upon detecting another entity it will maneuver to an intercept course.

As these particles are a reflection of an assumed behavior on the part of the other entity

being tracked they have access to the actual state of the tracking entity. Thus, the

behavior of the particles will display a “worst case” scenario. In other words, they will

display the possible behavior of the tracked entity as if it had perfect knowledge of the

tracking entity. To reflect these behaviors, transitional contextual particles in a track of

such a platform will exhibit the same behavior. A transitional probability for particles

was chosen to be 0.1transp = in order to ensure a large number of transitions for

visualization purposes.

Transitional particles which exhibit a hiding behavior are shown below.

In (a), the blue platform is operating its radar and has acquired a track of the red platform.

In (b), the blue platform has secured its radar and continued moving along its patrol plan.

Several of the contextual particles in blue’s track have transitioned into the hiding

behavior. These particles are colored green, and their behavior (moving on a reciprocal

bearing from blue) has begun to alter the estimated position of the red platform. In (c),

this process has continued and a large number of particles have transitioned into the

hiding behavior. Due to having perfect knowledge of the tracker’s location, the estimated

position has changed to reflect an updated course estimate based on the blue platform’s

new location.

77

(a) (b)

(c)

Figure 51. Transitional Contextual Particles Displaying a “Hiding” Behavior

Transitional particles which display a seeking behavior are shown below.

In (a), the blue platform is operating its radar and has acquired a track of the red platform.

In (b), the blue platform has secured its radar and continued moving along its patrol plan.

Several of the contextual particles in blue’s track have transitioned into the seeking

behavior. These particles are colored green and their behavior (moving on a course to

intercept blue) has begun to alter the estimated position of the red platform. In (c), this

process has continued, and a large number of particles have transitioned into the seeking

behavior. Due to the continued sanitization of particles which enter into visual range of

blue, the estimated position for the red platform has only moved a small distance.

However, the estimated course has changed to reflect the blue platform’s new heading

and speed.

78

(a) (b)

(c)

Figure 52. Transitional Contextual Particles Displaying a “Seeking” Behavior

While the two transitional behaviors shown above are relatively simple in

nature, they nonetheless illustrate the possible usefulness of contextual particles in

particle based tracking. With more complex or numerous transitional behaviors, particle

filter tracks could present an increasingly realistic (although possibly wrong) picture of

tracked entity behavior. With more than one possible transitional behavior for a given

particle, the possibility of classifying a track based on the types of transition particles it

held exists. For example, a particle track consisting of possible transitions to both hiding

and seeking behavior could be used to determine if the tracked entity was displaying a

hiding or seeking behavior. A metric designed to quantify the number or rate of

disqualification of particles which have transitioned to a specific behavior could be used

79

to change the transition probabilities of contextual particles in the track, thus fine tuning

the behavioral aspects of the particles being used for tracking.

C. USING THE PARTICLE TRACK

The usefulness of a tracking technique is to a certain extent characterized by the

accuracy of the state estimations made about the tracked entity. Estimated position,

heading, and speed have been mentioned as the primary measures of interest in this work.

One of the benefits of the particle filter tracking method is its ability to represent the state

of tracked entities both as a single point of interest and as an area of uncertainty. The

usefulness of single point estimations, referred to in the work above as the estimated

position, is discussed in a section below. The area of uncertainty representation of the

particle based track is discussed along with a simple path planning method as

implemented in the simulation environment.

1. Estimated Positions Again
The estimated position as illustrated in many of the figures in preceding sections

can be calculated in a trivial manner using the state of the particle track at any time.

These calculations are shown below.

Estimated Position Calculation

FOR 1: si N= ***Compute Estimated Position of Entity being Tracked***

 est est i ix x w x= + ***Compute Estimated x***

 est est i iy y w y= + ***Compute Estimated y***

 est est i ivx vx w vx= + ***Compute Estimated x Velocity***

 est est i ivy vy w vy= + ***Compute Estimated y Velocity***

END FOR

Figure 53. Computing an Estimated Position from a Particle Track

This method of calculating an estimated position yields a reasonably accurate

result when the particle filter is composed of naïve particles and detections occur

relatively frequently. This is due to the movement model of naïve particles; naïve

80

particles will maintain their course and speed until disqualified. Additionally, the high

rate of detections keeps the spread of the particle filter to a minimum in between updates.

This decreases the possibility of having to perform a bulk repopulation. With low rates

of detections, this estimate can still be useful if the estimated heading and speed bulk

repopulation algorithm is used to repopulate the track. Due to distribution of courses

which result in the particle track using this algorithm, the estimated position will move

with the tracked platform as opposed to the weighted position method which results in

many random headings and speeds.

When using general contextual particles, the accuracy of this method of

calculating estimated positions varies with the length of time from the last detection event

to the current time’s estimated position. Immediately following a detection event, the

estimated position will have a higher degree of accuracy due to the ability to conduct

partial repopulation of the particle track in a greater variety of circumstances. Since

particles used in a partial repopulation accurately reflect the state of the tracked entity, an

estimated position calculated immediately following repopulation will be the most

accurate. However, as contextual particles change their motion to provide a spread to the

area of uncertainty in the absence of further detections, the estimated position will stay

pinned to the center of the area of uncertainty (the location of the last estimated position).

This behavior is shown below. In (a), the platform has just secured its radar. The

estimate position is reasonably accurate for a passive detection. In (b), the blue platform

has continued moving. Roughly half of the general contextual particles have assumed

random headings and speeds which caused “spread” in the particle cloud. While the

estimated heading and speed is still accurate, the position estimate has been biased

towards the center of the forming cloud and has not moved with the blue platform.

81

(a) (b)

Figure 54. Limited Usefulness of Estimated Position when Using General Contextual
Particles

This problem with the estimated position as calculated above can be addressed by

storing estimated positions resulting from detection events and moving them forward in

time independent of the particle cloud. As these estimated positions are already stored

for use with bulk repopulation methods should they become necessary, this is an “easy”

fix. The increased accuracy of this different estimated position is shown below. The red

platform is using a particle track consisting of general contextual particles to track the

blue platform passively. The estimated position calculated from the current state of the

particle filter is shown in white as usual. An estimated position based on the detection

estimated position moved forward in time is shown in magenta.

Figure 55. Difference in Estimated Position Types

While both types of estimated positions can be useful, there are many instances

where due to infrequent detections and corresponding updates to the particle track the

estimated position can fail to provide an accurate result. One of these instances is shown

below. In (a), the red platform is operating its radar resulting in a track on the blue

82

platform. The blue platform has a passive track on the red platform. In (b), the red

platform has turned off its radar and reversed course. In (c), the red platform continues to

the south while the blue platform has turned to approach the estimated position of the red

platform. In (d), the blue platform has brought the estimated position of the red platform

under visual observation but has not acquired the red platform (which is out of range to

the south).

(a) (b)

(c) (d)

Figure 56. Estimated Position Failure

While a logical course of action for the blue platform in the situation above would

be to turn on its radar upon bringing the estimated position of the red platform to an

83

appreciably close distance (which would result in detection in this case), there are many

instances where this would be undesirable. In these cases, the treatment of the particle

track as a large number of samples as opposed to an estimated position provides the

means to continue the search. Although estimated positions can fail, they provide a

starting point for decision making, and in cases where the track in question has benefited

from frequent detection events and can provide highly accurate information. An example

showing the use of particles as a number of samples to plan paths through the

environment is provided in the next section.

2. Large Number of Samples
Using the particles in a given track individually can have benefits over attempting

to utilize the estimated positions shown above. For such tasks as path planning or

searching, the individual particles in a track can be used in cost functions or as metrics to

trigger a certain behavior. For example, by “binning” particles in a way similar to

occupancy maps in (Isla, 2006), an agent could plan a path through an environment to

either avoid or force detection. By counting the number of particles in a given track

which are within a specified sensor footprint, an agent could decide when to use long

range active sensors to accomplish sanitization or detection.

A simple path planning scenario was implemented in this work as a proof of

concept for using the particle from a track in this method. In this scenario, a blue

platform must maneuver from one location to another while attempting to avoid

detection. Waypoints in the environment were defined as the centers of the 10x10

display grids. A number of red platforms were placed in the environment in patrol areas

with pseudo-random radiation plans. The start of one such scenario is show below. The

blue platform is at the lower left corner of the display and has planned an initial path to

reach the upper right corner. There are three red platforms, all stationary, with

overlapping sensor arcs.

84

Figure 57. Initial Setup in Path Planning Example

Changes to the blue platform’s path will occur when it obtains tracks on any of

the three entities. While initial detections will always result in a new path plan,

continued detections of entities will only result in a new plan if the new track is

significantly different than a previously held track. This difference is calculated in the

same way that sporadic communication is scheduled in (Klaas et al. 2005). Additionally,

when the sum of the un-normalized weights of particles in a track drops below a

threshold, the path will be re-planned ignoring the lost track.

Track information is taken into account in a cost function used during path

planning. The A* algorithm is used to find a path over the grid when a new plan is

triggered. The estimate of remaining distance in the path is the straight line distance from

a given grid node to the goal position. Cost incurred is a sum of the distance already

traveled to reach a given point and the number of particles which fall into the grid square.

The first change to the plan path which occurs when the blue platform acquires a passive

track on the middle red platform is shown below.

85

Figure 58. Path Planned Based on “Binned” Particle Positions

As the blue platform continues along this planned path, it will eventually gain a

passive track on the red platform in the lower right corner. This will cause another

change in the planned path as shown below. Due to the extremely simplistic cost

function, the blue platform will blunder into the center red platform’s radar range.

Figure 59. Altered Path Planned Following Additional Detection

86

While the above example of path planning is extremely simple in nature, it

demonstrates the usefulness of the particle tracking method in representing areas of

uncertainty as opposed to a discrete estimated position. For planning methods which are

more complex, it has already been shown that the particle filter itself provides a metric

for deciding when to re-plan using an expensive algorithm versus continuing to carry out

the old plan. In a large environment with many entities having shared sensor states (not

an uncommon occurrence in military simulations) this ability could significantly reduce

the amount of wasted re-planning computation.

If the decision making involves determining the likelihood of a tracked entity

being near a spot in the environment at a given time, a kernel method could be employed

to test the probability of that spot being from the particle distribution. The Parzen-

windows approach to density estimate which has been used to visualize the state of

particle filters at certain points is a simple example of a kernel method. One of the

advantages of working with particle filters as described in this work is that they can be

advanced in time. This would allow a current track to be used to take into account the

travel time of an entity in question to reach a certain point and the likelihood of the

opposing entity being near the same point.

87

IV. ANALYSIS OF DIFFERENT TRACKING METHODS

A. BASIS FOR TRACKING ANALYSIS
Through the course of implementing and tweaking the particle tracking

techniques described above, it became evident that particle tracking techniques were

capable of capturing track uncertainty and computing accurate estimated positions in a

wide variety of circumstances. The tracks obtained using the described techniques

“looked right” to the eyes of both those with extensive and those with non-existent

surface warfare experience. Unfortunately, an agent in a simulation would not have the

ability to “look” at the state of its particle track in the manner of those watching of taking

part in a simulation. The extent of an agent’s knowledge about the state of a tracked

entity would consist entirely on the estimated positions and particle distributions resultant

from continued application of the particle track update algorithm.

To that effect the relative accuracies of the different tracking methods were

analyzed in four different scenarios which presented tracking problems of varying types

and difficulties. Two scenarios were designed to test the particle tracks’ accuracy at

determining target location, course, and speed through the use of active sensors. Those

scenarios and resulting analysis of the different track types are contained in the active

tracking section below. Two scenarios were designed to test track estimated position,

course, and speed accuracy on tracks obtained wholly from passive means. Those

scenarios and corresponding analysis can be found in the passive tracking section below.

B. ACTIVE TRACKING
The active tracking capabilities of the methods described above all have

comparable performance. Due to the low bearing and range ambiguity of active sensors

in the simulation, entities are able to obtain an accurate position with the first sensor

sweep. Accurate courses and speeds of tracked entities take a series of sensor sweeps to

obtain, but are readily available after a short period of time. The accuracy of the particle

tracking techniques described in this work in an active tracking context was tested in two

simple scenarios. The first scenario, the run to the south, tested these abilities on a non-

88

maneuvering target. The second scenario, southern zig-zag, tested the active tracking

capabilities of the particle tracking methods on a maneuvering target. The results from

these tests are detailed below.

1. Run to the South Scenario
As an initial test of active tracking capabilities a scenario was constructed in

which a blue and red platform start abreast and proceed to the south with constant

headings and speeds. The blue platform continually operates its radar during the run with

the red platform being inside detection range. The scenario continues until the blue track

of the red platform satisfies several criteria. These criteria are a distance between the

estimated and actual location of the red platform of less than 0.1 simulation units,

estimated heading within 2.5 degrees of actual heading, and estimated speed within one

speed unit. A visualization of this scenario is shown below.

Figure 60. Run to the South Scenario Visualization

This scenario was run with six different track configurations, three using naïve

particles and three using general contextual particles. The parameters of the particle

tracks during these runs are shown in the tables below.

Naïve Particle Track Parameters

maxN Pr Br BR

2500 0.75 0.25
Weighted Position
Estimated Hdg/Spd

Combined
Table 5. Naïve Particle Track Parameters for Scenarios

89

General Contextual Particle Track Parameters

maxN Pr Br BR

2500 0.75 0.10
Weighted Position
Estimated Hdg/Spd

Combined
Table 6. General Contextual Particle Track Parameters for Scenarios

Both the red and the blue platforms were given an identical course and speed of

180 degrees at a speed of twenty-two. The scenario was run 100 times for each particle

track variety. The location aspect of the criteria was satisfied on the first sensor sweep

for every track variety. The performances of the tracks in satisfying all three criteria at

the same time are shown in the table below. While the average times vary somewhat due

to several outliers, the median times for satisfying all of the criteria are all around 1.3

simulation minutes. All the tracking methods perform similarly in this active tracking

context (0.19p =). With a radar sensor sweep cycle of 0.02 simulation minutes this

equates to around sixty-five radar sweeps to meet all the track accuracy criteria

mentioned above.

Bulk Repopulation Method Average Time Median Time

Weighted Position 4.85 1.34
Estimated Heading and Speed 9.07 1.32

Combined 3.87 1.34
Weighted Position 8.06 1.34

Estimated Heading and Speed 4.61 1.30
Combined 1.90 1.34

N
aï

ve
C

on
te

xt

Table 7. Average and Median Criteria Satisfaction Times in Run to the South Scenario

A time-lapsed Parzen-windows approximation of the particle track heading and

speed distribution shows how the continued active detections drive the particles in the

track to correspond to the actual target’s course and speed. The visualizations shown

below were taken from one run of a naïve particle track using the combined bulk

replacement method. In this particular run the accuracy criteria were met in 1.25

simulation minutes. Recall that the actual target heading and speed in this scenario is 180

at a speed of twenty-two simulation knots.

90

0

45 90

13
5

18
0

22
5

27
0

31
5

36
0

0.025

0.425

0.825
1.225

0

0.0025

0.005

0.0075

0.01

Heading

Time

Figure 61. Parzen-Windows Approximation of Time Lapsed Particle Track Heading

Distribution (Window Width 7.2)

0 5 10 15 20 25 30
0.025

0.45

0.875
0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 62. Parzen-Windows Approximation of Time Lapsed Particle Track Speed

Distribution (Window Width 1.0)

2. Southern Zig-Zag Scenario
The above scenario, while showing that the different repopulation methods

perform similarly in an active tracking context, is not very interesting because the target

being tracked is not maneuvering. A scenario similar to the run to the south was created

to test the particle tracks’ abilities to accurately track a maneuvering target. The red

91

platform was given a series of southerly heading changes and an increased speed to allow

it to remain within the radar footprint of the blue platform. A visualization of the

southern “zig-zag” scenario is shown below.

Figure 63. Southern Zig-Zag Visualization

The southern zig-zag scenario was run for two hours (120 minutes) of simulation

time. The charts and tables below are based on the averaged results from 100 runs of this

scenario for each tracking method. Track parameters were the same as those in the run to

the south scenario. Comparisons between the estimated and actual state of the red

platform were calculated every five minutes of simulation time. The estimated locations

of the red platform were extremely accurate due to the low bearing and range ambiguity

of the sensor in this simulation. The heading and speed estimates were accurate while the

red platform was steady on a course and inaccurate in the periods immediately following

a course change.

The chart below shows the course accuracy of the blue platform’s track of the red

platform. The performance of the different track types appears similar in performance.

The peaks of inaccuracy in estimated heading correspond to the red platform’s course

changes. Following these peaks, the estimates get progressively more accurate as the red

platform maintains its course and speed for longer periods of time.

92

0

45

90

135

180

0 15 30 45 60 75 90 105 120

Simulation Time

Es
t/A

ct
 H

ea
di

ng
 D

iff
er

en
ce

Naïve/Weighted

Naïve/Estimated

Naïve/Combined

Context/Weighted

Context/Estimated

Context/Combined

Figure 64. Difference between Estimated and Actual Red Platform Heading in Southern

Zig-Zag Scenario

A table showing the average difference in estimated target course throughout the

scenario illustrates that some of the tracking methods are better than others at capturing

the heading of a maneuvering target. The letters denote membership in a group of

tracking techniques which share statistically similar performance (.05p >). Thus all the

tracking methods performed relatively similarly in estimating heading in this scenario

with the exception of the general contextual particle track utilizing the weighted position

bulk replacement method.

Bulk Repopulation Method Average Hdg Difference Group

Weighted Position 15.78 A
Estimated Hdg/Spd 16.18 A

Combined 14.43 A
Weighted Position 12.70 B
Estimated Hdg/Spd 14.99 A

Combined 14.08 A

N
aï

ve
C

on
te

xt

Table 8. Average Heading Accuracy of Different Track Types in Southern Zig-Zag

Scenario

A table showing the average difference in estimated target speed throughout the

scenario indicates that there was some difference in speed estimation capability between

different tracking types. While all the track types maintained an average speed

inaccuracy of around two speed units, one group of methods achieved slightly better

93

results. The group letters on the table below show the types of tracking methods which

performed with similar accuracy (.05p >).

Bulk Repopulation Method Average Spd Difference Group

Weighted Position 1.79 A
Estimated Hdg/Spd 1.84 A

Combined 1.90 A B
Weighted Position 1.85 A
Estimated Hdg/Spd 2.08 B

Combined 2.22 B

N
aï

ve
C

on
te

xt

Table 9. Average Speed Accuracy of Different Track Types in Southern Zig-Zag Scenario

A time-lapsed parzen-windows approximation of the particle track heading and

speed distribution through one run of the simulation are shown below. The visualizations

shown are taken from a simulation run in which the track is a naïve particle track using

the combined bulk repopulation method. The heading visualization is shown “flipped” so

that the start of simulation is at the top of the display and the end of the simulation is at

the bottom. This facilitates comparison to the red platform’s patrol plan in the simulation

window. The “gaps” in the distribution correspond to the red platform’s course changes

through the course of the scenario, and illustrates the time periods during which old

particle track information is being adjusted to fit the new heading of the tracked target.

94

0
4590

13
5

18
0

22
5

27
0

31
5

36
0

0

15

30

45

60

75

90

105

120

Heading

Time

Figure 65. Time Lapsed Parzen-Windows Approximation of Particle Track Heading

Density (Window Width 7.2)

Figure 66. Southern Zig-Zag Scenarion Visualization for Comparison with Parzen-

Windows Approximation of same Scenario

The time-lapsed parzen-windows approximation of the speed distribution in the

particle track also shows these periods of track adjustment. This display has also been

flipped so that the start of the simulation is at the top of the display. The periods of track

speed adjustment correspond to those in the heading display above. Prior to and after

these periods, the track displays an accurate estimated of the course’s actual speed of

twenty-seven (shown at the left due to the orientation of the graph).

95

051015202530

0

15

30

45

60

75

90

105

120

Speed

Time

Figure 67. Time Lapsed Parzen-Windows Approximation of Particle Track Speed

Density (Window Width 1.0)

While there were some minor differences in the ability of the different tracking

types to estimate the course and speed of maneuvering targets, all of the techniques

demonstrate the ability to accurately track targets through active means. The sections

below will explore the ability of these same techniques to accurately portray a series of

passive detections.

C. PASSIVE TRACKING
Tracking another entity through passive means presents significant challenges to

the tracking platform due to the high ambiguity of the associated detections. The inexact

nature of passive detections can be offset to a certain extent by intelligent maneuvering of

the tracking platform to leverage the more exact bearing information of these detections

as compared to the lack of accurate range information. However, complimentary

maneuvers by the tracked platform can negate the effect of these disambiguation course

changes. If the tracked platform can induce a situation where there is no bearing shift

from the tracking platform’s point of view, passive tracking becomes very difficult. The

first scenario used to test passive tracking, the closing scenario, tests passive tracking on

96

a target with no bearing shift. The second scenario, the triangulation scenario, tests

passive tracking in a situation with a large amount of bearing shift.

1. Closing Scenario

The first scenario evaluated the ability of these particle tracking techniques to

discern accurate estimated target state from a situation with no discernable bearing shift.

In this scenario a red platform will move towards a stationary blue platform operating its

radar at preset time intervals. The red platform started out of counter-detection range of

the blue platform eventually entering visual detection range of the blue platform. A

visualization of this closing scenario is shown below.

Figure 68. Closing Scenario Visualization

The actual course and speed of the red platform was 270 degrees at a speed of

twenty. The red platform operated its radar for five simulation minute intervals,

beginning at the start of the scenario and with fifteen minute periods of radar silence in

between subsequent radiation periods. The scenario was run for four simulation hours

with track accuracy statistics collected every five minutes. All of the charts and tables

below with the exception of the parzen-windows approximations present the average data

from 100 simulation runs with each track type. The red platform entered the blue

platform’s counter-detection range eighty-five minutes into the scenario and entered

visual range of the blue platform two-hundred-fifteen minutes into the scenario. The

scenario was run with ten different track types. The first three track types were naïve

particle tracks utilizing the weighted position, estimated heading and speed, and

97

combined bulk repopulation methods. The second three track types were general

contextual particle tracks utilizing the same three bulk replacement methods. The last

four were four varieties of a transitioning contextual particle filter. The parameters for

those track types are shown below. The transitioned behavior used in the closing

scenario was a “seeker” behavior. When a contextual particle transitions to this behavior,

it will maintain its current speed while changing course to intercept the position of the

platform owning the track.

Transitioning Contextual Particle Track Parameters

maxN Pr Br BR chgp transp transBehavior

2500 0.75 0.10
Weighted Position
Estimated Hdg/Spd

Combined
0.45
0.35

0.10
0.30 Seeker

Table 10. Transitioning Contextual Particle Track Parameters for Scenarios

While the positional accuracy of the different tracking types varied, they all

displayed a similar pattern of changing estimates. This pattern is shown in the figure

below. The four tracking types displayed all begin with an inaccurate position estimate

when the red platform first comes into counter-detection range. Although this estimate

appears to improve steadily until just after time 120, this is a reflection of the tracked

platform moving from the outer portion of the counter-detection window to the middle

portion. At these ranges the limited range disambiguation of the radar detector as

modeled in this simulation cannot effectively reduce the size of the detection distribution

used to disqualify particles. Therefore the estimated position is in the middle of the

particle cloud, and as the platform moves to this location the estimated position gets very

“accurate.” This is followed by a general decreasing of positional accuracy as the red

platform moves past the midpoint of the detection distribution towards the blue platform.

At around simulation time 160, the range accuracy of the radar detector begins to have an

effect on the size of the range distribution used for particle disqualification and this is the

cause of the jagged appearance of the position estimates following this time. The

portions with increasing accuracies correspond to the red platform’s radar operation

intervals while the increasing portions correspond to the intervals where the red platform

98

has silenced its radar. At the far right chart the red platform has entered visual detection

range of the blue platform, and the track transitions to an active track.

0

5

10

15

20

0.0 60.0 120.0 180.0 240.0

Simulation Time

Es
t/A

ct
 P

os
iti

on
 D

iff
er

en
ce

Naïve/Combined

Context/Weighted

Seeker (0.1)/Combined

Seeker (0.3)/Combined

Figure 69. Difference Between Estimated and Actual Position in Closing Scenario

Average positional accuracy of the different tracking methods during the period

of the scenario in which the red platform was being passively tracked (85.0 – 215.0) are

presented in the table below. The transitional particle filter performed the best due to the

accurate depiction of the red platform’s movement. The general contextual particles

performed the worst due to the ability for particles to choose random courses and speeds

throughout the tracking problem while the naïve particle filter tends to repopulation only

with particles that somewhat reflect the movement of the red platform. As the chart

shows, track types performed similarly based on the type of particle in the tracks and that

the bulk repopulation methods did not have a great effect on track accuracy.

Bulk Repopulation Method Avg Posit Difference Group

Weighted Position 7.60 A
Estimated Hdg/Spd 7.70 A

Combined 7.52 A
Weighted Position 8.94 B
Estimated Hdg/Spd 8.91 B

Combined 9.29 B
Weighted Position 6.64 C
Estimated Hdg/Spd 6.64 C

Combined 6.13 C

N
aï

ve
C

on
te

xt
Se

ek
er

Table 11. Average Position Accuracy of Different Track Types in Closing Scenario

99

While all three track types performed similarly with regards to positional

accuracy through the closing scenario heading accuracy was heavily dependent on the

type of particles used in the blue platform’s track. The chart below shows the pattern of

estimated heading accuracy through the course of the closing scenario. With the

exception of the transitioning particle track, the tracking techniques are unable to obtain

an accurate heading of the red platform until the limited range disambiguation

capabilities of the radar detector are able to affect the size of the detection distributions

around time 170.0.

0.00

45.00

90.00

135.00

180.00

0 60 120 180 240

Simulation Time

Es
t/A

ct
 H

ea
di

ng
 D

iff
er

en
ce

Naïve/Weighted
Context/Combined
Seeker (0.1)/Combined
Seeker (0.3)/Combined

Figure 70. Difference Between Estimated and Actual Heading in Closing Scenario

A table containing the average heading accuracy of the different track types

through the passive tracking portion of the closing scenario is shown below. Once again

the bulk repopulation method use by the different track types did not have a significant

effect on track accuracy. The transitioning particle track far outperformed the other two

track types with the naïve particle track averaging more than ninety degrees off in

estimated heading accuracy.

100

Bulk Repopulation Method Avg Hdg Difference Group
Weighted Position 110.02 A
Estimated Hdg/Spd 116.38 A

Combined 116.30 A
Weighted Position 82.43 B
Estimated Hdg/Spd 77.62 B

Combined 70.17 B
Weighted Position 3.64 C
Estimated Hdg/Spd 4.47 C

Combined 4.56 C

N
aï

ve
C

on
te

xt
Se

ek
er

Table 12. Average Heading Accuracy of Different Track Types in Closing Scenario

The time-lapsed parzen-windows approximation of track heading distribution

density below shows the difficulties encountered by the naïve and general contextual

particle tracks in estimating accurate course information. In early portions of the scenario

there are larger numbers of particles with headings of the actual course (270) and the

reciprocal course (90). Due to the large range ambiguity of the radar detector particles on

the reciprocal heading are retained in the track until the red platform is close enough for

range-disambiguation to disqualify these reciprocal heading particles.

0 45 90 135 180 225 270 315 360
85

170
0

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

0.009

Heading

Simulation Time

Figure 71. Time-Lapsed Parzen-Windows Approximation of General Contextual Particle

Filter Heading Density (Window Width 7.2)

101

The transitioning particle track does not have the same problem due to the

movement model of transitioned particles. The intercept course of transitioning particles

and the small probability of disqualifying these particles results in a heading distribution

density resembling that shown below.

0 45 90 135 180 225 270 315 360
85

170
0

0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

Heading

Simulation Time

Figure 72. Time-Lapsed Parzen-Windows Approximation of Transitioning Contextual

Particle Filter Heading Density (Window Width 7.2)

While the two contextual particle tracks exhibited similar performance in

estimating the speed of the red platform, the naïve particle track performed dismally. As

the chart below shows, initial speed estimates of the red platform during the passive

tracking phase of the closing scenario are reasonably accurate. While the two contextual

track types maintain this level of accuracy through the rest of the passive tracking

problem, the naïve particle track gets progressively less accurate until the red platform

enters the blue platform’s visual detection range. This was due to the large number of

particles with “slow” speeds which were duplicated during partial replacements. Slow

particles were able to stay within the successive detection distributions regardless of their

heading while faster particles were disqualified when their heading took them out of the

detection distributions. Continued partial replacements duplicated the slow particles with

higher and higher probabilities due to their increasing number in the track. This resulted

in worsening speed estimation from the track as the tracking problem continued.

102

0

5

10

15

20

0 60 120 180 240

Simulation Time

Es
t/A

ct
 S

pe
ed

 D
iff

er
en

ce

Naïve/Combined

Context/Combined

Seeker (0.1)/Combined

Seeker (0.3)/Combined

Figure 73. Difference Between Estimated and Actual Speed in Closing Scenario

A table showing the average speed accuracy of the different track types through

the passive tracking portion of the scenario is provided below. Although the general and

transitioning contextual particle filters performed similarly, the differences in overall

performance were significant enough to yield statistically different performances. The

naïve particle filter was unable to estimate the target speed with any degree of accuracy.

Bulk Repopulation Method Avg Spd Difference Group

Weighted Position 12.56 A
Estimated Hdg/Spd 12.60 A

Combined 12.69 A
Weighted Position 6.92 B
Estimated Hdg/Spd 6.91 B

Combined 6.85 B
Weighted Position 6.26 C
Estimated Hdg/Spd 6.28 C

Combined 6.26 C

N
aï

ve
C

on
te

xt
Se

ek
er

Table 13. Average Speed Accuracy of Different Track Types in Closing Scenario

A time-lapsed Parzen-windows approximation of the speed distribution density of

a naïve particle track through the passive tracking phase of the closing scenario shows a

consistently bad estimated speed figure (actual target speed 20.0). This is due to the low

range disambiguation ability of the radar detector mentioned above. All of the bulk

replacement methods rely on prior estimated positions to some extent. As the estimated

position remains pinned in the center of the line-of-bearing through most of the passive

tracking phase, the estimated speed of the target will be close to zero. Any use of bulk

103

repopulation methods will render this bad speed estimate significantly hard to overcome

without a means of radically altering the track configuration.

0 5 10 15 20 25 30
85

1700

0.05

0.1

0.15

0.2

0.25

Speed

Simulation Time

Figure 74. Time-Lapsed Parzen-Windows Approximation of Naïve Particle Filter Speed

Density (Window Width 1.0)

By contrast, both of the contextual particle track types provide means to alter the

nature of the particle track regardless of prior estimates. The general contextual track

accomplishes this through random course changes to select particles and the transitioning

contextual track accomplishes this through both random and directed course changes. A

time-lapsed Parzen-windows approximation of the speed distribution density of a

transitioning contextual track through the passive portion of the closing scenario is shown

below. The random course and speed changes resulted in a more diverse speed

distribution through the track with a “bad” mode at slower speeds due to the same

circumstances described above and a “good” mode closer to the actual speed of the

contact made possible by these two tracks’ abilities to change the composition of the

particle track.

104

0 5 10 15 20 25 30
85

155
0

0.01

0.02

0.03

0.04

0.05

0.06

Speed

Simulation Time

Figure 75. Time-Lapsed Parzen-Windows Approximation of Transitioning Contextual

Particle Filter Speed Density (Window Width 1.0)

2. Triangulation Scenario
The results above show that even with prior knowledge of target behavior (as in

the transitioning contextual particle track) the level of accuracy attainable using these

particle tracking techniques in a zero-bearing-shift passive tracking problem is limited.

To a certain extent this is comparable to real-life passive tracking problems in which an

emphasis is placed on imposing bearing shift in similar situations through maneuvering to

make the tracking problem easier. As the closing scenario examined the ability of the

particle tracking techniques to achieve accurate estimates through passive tracking in a

worst case scenario, another scenario was created to test the performance of the tracking

techniques in the best case.

The triangulation scenario consists of a blue platform attempting to obtain a

passive fix on a radiating red platform maintaining a constant course and speed. The

same radiation plan was used for the red platform as in the closing scenario (five minute

radiation periods with fifteen minute intervals of radar silence). The blue platform has a

patrol plan which induces bearing shift while varying the range to the target. The course

of the red platform is 90 degrees at a speed of five. A visualization of this scenario is

shown below.

105

Figure 76. Triangulation Scenario Visualization

The triangulation scenario was run for 240 simulation minutes with track

accuracy statistics gathered every five minutes. The charts and tables presented below

display the average results from 100 simulation runs with each track type. The scenario

was run with ten different track types. Three naïve and three general contextual tracks

were used with identical parameters to shown above. The final four track types were

transitioning contextual particle tracks with change and transition probabilities equal to

those used in the closing scenario. Instead of a seeking behavior, a hiding behavior was

used for transitioned particles. This behavior consists of a transitioned particle

maintaining its speed while adopting a course which is within thirty degrees of the

reciprocal bearing of the tracker.

The blue platform’s position estimates of the red platform were generally accurate

in this scenario. Like the position estimates in the closing scenario, the estimates in the

triangulation scenario showed similar behavior across all track types. Initial estimates of

the red platform’s location were very accurate. These estimates became less accurate as

the simulation progressed and the red platform reached the edge of counter-detection

range. These estimates also displayed the saw-tooth pattern seen in the results of the

closing scenario with low points corresponding to red platform radar operation and the

increasing periods of inaccuracy corresponding to red platform radar silent periods. A

chart showing the positional accuracy behavior of the different track types in the

106

triangulation scenario is shown below. Note that maximum end of the range scale is set

at a distance of ten. In this simulation that distance corresponds to the visual range of

platforms. Therefore all of the tracking techniques are sufficiently accurate to allow a

tracking platform to get within visual range of the track platform.

0

2

4

6

8

10

0 60 120 180 240

Simulation Time

Es
t/A

ct
 P

os
iti

on
 D

iff
er

en
ce

Naïve/Combined
Context/Combined
Hider (0.1)/Combined
Hider (0.3)/Combined

Figure 77. Difference Between Estimated and Actual Position in Triangulation Scenario

A table showing the average accuracy of the different track types through the

triangulation scenario is shown below. The transitioning particle filter performed the best

while the naïve and general contextual particle tracks performed similarly. The estimated

heading and speed bulk replacement method perform significantly worse when pared

with the naïve particle track. This was most likely due to the sub-par estimated positions

obtained through passive tracking in the initial phases of the scenario.

Bulk Repopulation Method Avg Posit Difference Group

Weighted Position 3.10 A
Estimated Hdg/Spd 3.59 A B

Combined 3.03 A
Weighted Position 3.75 B
Estimated Hdg/Spd 3.79 B

Combined 3.74 B
Weighted Position 1.67 C
Estimated Hdg/Spd 1.73 C

Combined 1.64 C

N
aï

ve
C

on
te

xt
H

id
er

Table 14. Average Position Accuracy of Different Track Types in Triangulation Scenario

107

The heading accuracy of the naïve and transitioning particle tracks in the

triangulation scenario were outstanding. The general contextual particle filter resulted in

reasonably accurate initial heading estimates but suffered from increasingly inaccurate

results through the course of the scenario. This was due to the random movement factor

of the general contextual particles. While this movement feature was an asset in the

closing scenario, in the triangulation scenario it resulted in inaccurate estimates due to the

increasing size of the detection distributions allowing particles with inaccurate headings

to remain in the track. The relative heading performance of the different track types

through the course of the triangulation scenario are shown in the chart below.

0

45

90

135

180

0 60 120 180 240

Simulation Time

Es
t/A

ct
 H

ea
di

ng
 D

iff
er

en
ce

Naïve/Combined
Context/Combined
Hider (0.1)/Combined
Hider (0.3)/Combined

Figure 78. Difference Between Estimated and Actual Heading in Triangulation Scenario

The bow shape of the transitioning particle track is due to the imperfect reflection

of the red platform’s motion in the transitioned behavior of the hiding particles. The

transitioned particles update their course to reflect the current bearing of the tracking

platform from the particle. While this is a close approximation in this scenario, it is not

perfect, particularly at the extreme ends of the patrol plan. A time-lapsed Parzen-

windows approximation of the heading distribution density of a transitioning particle

filter which illustrates this behavior is shown below.

108

0
45

90
135

180
225

270
315

360
0

60

120

180

240

0
0.005
0.01

0.015
0.02

Heading

Simulation Time

Figure 79. Time-Lapsed Parzen-Windows Approximation of Transitioning Contextual

Particle Filter Heading Density (Window Width 7.2)

The behavior of a naïve particle track in the same scenario is much “noisier” but

arrives at an accurate estimate nonetheless. A time-lapsed Parzen-windows

approximation of the speed distribution density in a naïve particle track through the

triangulation scenario is shown below. While the naïve particle track contains a number

of particles on a reciprocal heading, the number of particles near the actual heading of the

red platform is sufficient to result in accurate heading estimates.

0 45 90 135 180 225 270 315 360
0

7 5

15 0

2 2 5

0
0.002
0.004
0.006

0.008
0.01

0.012
0.014

0.016

0.018

Heading

Simulation Time

Figure 80. Time-Lapsed Parzen-Windows Approximation of Naive Particle Filter Heading

Density (Window Width 7.2)

109

A table showing the average heading accuracy of the different track types in the

triangulation scenario is provided below. Tracks consisting of like particle types

performed similarly regardless of the bulk replacement method used. This was due to the

radiation interval of the red platform which allowed partial repopulation to occur at most

particle track update cycles. This resulted in use of the bulk repopulation methods in a

very limited number of trials. The transitioning particle tracks performed with the most

accuracy followed by the naïve particle tracks. The general contextual particle tracks

performed with the least heading accuracy due to circumstances already described above.

Bulk Repopulation Method Avg Hdg Difference Group

Weighted Position 30.67 A
Estimated Hdg/Spd 25.47 A

Combined 23.49 A
Weighted Position 62.71 B
Estimated Hdg/Spd 64.13 B

Combined 61.86 B
Weighted Position 16.39 C
Estimated Hdg/Spd 16.04 C

Combined 16.40 C

N
aï

ve
C

on
te

xt
H

id
er

Table 15. Average Heading Accuracy of Different Track Types in Triangulation Scenario

The speed accuracy of the particle tracks in the triangulation scenario tended to

increase with the amount of time available for observation. The only exception of this

pattern was the general contextual particle track which maintained the same level of

speed accuracy throughout the scenario. The speed estimation behavior of the different

particle tracks is shown in the chart below.

110

0

5

10

15

20

0 60 120 180 240

Simulation Time

Es
t/A

ct
 S

pe
ed

 D
iff

er
en

ce

Naïve/Combined
Context/Combined
Hider (0.1)/Combined
Hider (0.3)/Combined

Figure 81. Difference Between Estimated and Actual Speed in Triangulation Scenario

A table showing the average speed accuracy of the different track types in the

triangulation scenario is provided below. The two contextual particle filters performed

similarly while the naïve particle filters performed the best by a significant margin.

Bulk Repopulation Method Avg Spd Difference Group

Weighted Position 3.03 A
Estimated Hdg/Spd 3.20 A

Combined 3.08 A
Weighted Position 8.97 B
Estimated Hdg/Spd 8.91 B

Combined 8.95 B
Weighted Position 8.06 B
Estimated Hdg/Spd 8.11 B

Combined 8.08 B

N
aï

ve
C

on
te

xt
H

id
er

Table 16. Average Speed Accuracy of Different Track Types in Triangulation Scenario

The results above show that the ability of the particle tracking techniques to

obtain accurate state information on entities through passive means relies on the ability to

induce bearing and/or range shift on the target. This requirement does not reflect a

weakness of the particle tracks but the general difficulty of tracking other platforms

through solely passive means. To this effect the particle tracks reflect the actual

difficulties encountered in tracking real-world entities through inexact passive means.

111

V. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS
Through the course of this work it became evident that although particle filter

tracking techniques present a novel and flexible means of representing target state in a

variety of environments their immediate usefulness in general defense simulation pursuits

has limitations. Although the naïve particle filter technique described in this work

displayed an ability to accurately determine target heading and speed in both active and

passive tracking contexts doing so required a large number of particles in the track.

While large numbers of particles per track was not an issue in this simple simulation, in

large-scale defense simulations with large entity counts and communication schemes this

requirement would lead to a larger computational overhead if naïve particle schemes

were implemented. This need could be addressed by using particle tracking techniques

only for positional estimation and then applying simple target motion analysis procedures

to the series of locations obtained from the tracks. Position estimation can be achieved

through particle tracks with a significantly smaller particle count in individual tracks.

The transitioning particle filter tracking technique proposed in this work is also a

possible method of alleviating the need for large particle counts to achieve accurate

heading and speed information. In the two passive tracking scenarios detailed in the

analysis chapter of this work the transitioning particle filters performed superbly in

comparison to the naïve and general contextual particle tracks. In the closing scenario,

which represented a worst case tracking problem, the transitioning contextual particle

filter presented the only means to accurately predict target heading and speed. In the

triangulation scenario, although the transitioning particles were outperformed by the

tracks consisting of naïve particles, they were able to achieve usable levels of accuracy

despite the transitioning particles not directly representing the movement model of the

platform being tracked. This seems to indicate that intelligently chosen simple

movement models for transitioned particles could result in highly accurate state

estimations of tracked entities while requiring a substantially lower particle count.

112

Although the particle tracking technique in its current state is not ready for use in

large-scale military situations, in smaller scale environments with a small number of

entities the technique presents a means to represent both active and passive tracks. In

addition, in smaller and more complex environments with small particle count

requirements transitioning contextual particles can be provided with movement and/or

behavioral models closely approximating those used by the actual entities in the

simulation. In this way computer controlled entities can be provided with limited

information yet still have the ability to construct very detailed and accurate tracks of

opposing entities. The visualization of the particle tracking method also shows potential

to more accurately display uncertainty data to human decision makers. The appearance

of detection distributions and their corresponding increased in uncertainty over time offer

more discerning visualization of target uncertainty than current datums (which are

expanding circles centered at old estimated positions.

B. FUTURE WORK
While the tracking techniques performed admirably as implemented in this work

several avenues of possible extensions to improve or alter the utility of these methods

became evident. Some of the more challenging and possibly rewarding direction for

future study of particle based tracking methods in simulation environments are discussed

briefly below.

1. Use in Actual Simulation
Perhaps the first extension would be to use the particle tracking technique in an

environment with a more realistic sensor and detection representation. The techniques

presented in this work were constructed using a generalized detection representation and

as such should support a wide variety of detection types. . Prior to actually using this

tracking method in a simulation it would be necessary to test its use with sensor models

which result in dirty or completely misleading data. Additionally, use of the particle

filter technique should be tested in an environment without perfect correlation of sensor

information. An examination of the particle track’s response to this data would need to

be conducted to ensure that the methods result in appropriate uncertainty representations

and state estimations within the environment.

113

The use of the particle tracking method in an actual simulation would also require

a more strenuous examination of the types of information which can be obtained from a

particle track. While the position, heading, and speed were relatively well explored in

this work and the use of the individual particles to represent an area of uncertainty was

discussed briefly, use in an actual simulation would require a more detailed analysis of

ways to convert this type of information into states which could be used by a simulation

engine. Due to the wide array of simulation suites used in the defense industry, the

feasibility of using a particle tracking technique in defense simulations would need to be

made on a case-by-case basis with the needs of the individual simulation taken into

account.

2. Contextual Particle Behaviors
Although the general and transitioning contextual particle behaviors presented in

this work were simple in nature, their inclusion into several of the test scenarios resulted

in very accurate tracking information. These results seem to indicate that the

development of more detailed or widely applicable individual particle behaviors could

result in better tracking results with a decreased need for high particle counts. A more

detailed analysis of the effects of transitioning particles on track accuracy including the

use of complex behaviors needs to be completed prior to embracing this technique for use

in future particle tracking systems.

The possibility of classifying track behavior through the use of the transitioning

particle technique also exists. Given no prior knowledge of track behavior and a particle

track made up of several different transitioning particle types the rates of disqualification

of certain particle types could be compared to arrive at an estimate not only of the

position, heading, and speed of the platform in question but of the tracked entity’s

behavior. These rates could result in changed transition rates for the different particle

types to not only classify the target in question but increase the ability of the particle

track to accurately represent the estimated state of the target. Continued application of

these techniques could result in the ability of a track to fine tune its uncertainty

representation through a variety of behaviors on the part of the tracked entity.

114

3. Additional Dimension

The particle tracking techniques reviewed in this work were based in a two-

dimensional environment. The use of such tracking techniques to represent target

uncertainty in a three-dimensional environment would require little modification if the

only state information of interest were the location of the tracked entity. The addition of

heading and speed information to items of interest would present a significant challenge

to the naïve particle filter track types implemented in this work. This is due to the large

array of possible headings for naïve particles in a three dimensional environment. If the

same movement model and estimated position techniques were used in this environment

a prohibitively large number of particles would be required to accurately capture the

tracked entity’s heading and speed.

This weakness of the methods described in this work could be addressed through

the use of the particle filter tracking technique only for positional estimation while

relying on other algorithms to extract heading and speed information from a series of

estimated positions. This method could also be addressed through the contextual particle

filter model with the use of a more restrictive movement model for individual particles.

In either case a more comprehensive study of these techniques would be required to

determine the usefulness of the particle filter tracking method in a three-dimensional

environment.

115

LIST OF REFERENCES

Arulampalam, S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle
filters for on-line non-linear/Non-gaussian bayesian tracking. IEEE Transactions on
Signal Processing, 50(2), 174-188.

Bererton, C. (2004). State estimation for game AI using particle filters. AAAI Workshop
on Challenges in Game AI,

Buss, A. (2002). Simkit: Component based simulation modeling with simkit. WSC '02:
Proceedings of the 34th Conference on Winter Simulation, San Diego, California. 243-
249.

Buss, A. H., & Sanchez, P. J. (2005). Simple movement and detection in discrete event
simulation. WSC '05: Proceedings of the 37th Conference on Winter Simulation,
Orlando, Florida. 992-1000.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification (2nd ed.). New
York: Wiley.

Isla, D. (2006). Probabilistic target tracking and search using occupancy maps. In S.
Rabin (Ed.), AI game programming wisdom III (379-387). Massachusetts: Charles River
Media.

Klaas, M., Southey, T., & Cheung, W. (2005). Particle-based communication among
game agents. Artificial Intelligence and Interactive Digital Entertainment Conference,
Marina del Rey, CA. 75-80.

Stout, B. (2000). The basics of A* for path planning. In M. DeLoura (Ed.), Game
programming gems (254-262). Massachusetts: Charles River Media.

Stroupe, A. W., Martin, M. C., & Balch, T. R. (2001). Merging gaussian distributions for
object localization in multi-robot systems. ISER '00: Experimental Robotics VII, 343-
352.

van der Sterren, W. (2002). Tactical path-finding with A*. In D. Treglia (Ed.), Game
programming gems 3 (294-306). Massachusetts: Charles River Media.

116

THIS PAGE INTENTIONALLY LEFT BLANK

117

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

